Gadolinium-based contrast agents (GBCAs) have been used for more than 30 years to improve magnetic resonance imaging, a crucial tool for medical diagnosis and treatment monitoring across multiple clinical settings. Studies have shown that exposure to GBCAs is associated with gadolinium release and tissue deposition that may cause short- and long-term toxicity in several organs, including the kidney, the main excretion organ of most GBCAs. Considering the increasing prevalence of chronic kidney disease worldwide and that most of the complications following GBCA exposure are associated with renal dysfunction, the mechanisms underlying GBCA toxicity, especially renal toxicity, are particularly important. A better understanding of the gadolinium mechanisms of toxicity may contribute to clarify the safety and/or potential risks associated with the use of GBCAs. In this work, a review of the recent literature concerning gadolinium and GBCA mechanisms of toxicity was performed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11012457PMC
http://dx.doi.org/10.3390/ijms25074071DOI Listing

Publication Analysis

Top Keywords

gadolinium-based contrast
8
mechanisms toxicity
8
toxicity
6
toxicity mechanisms
4
gadolinium
4
mechanisms gadolinium
4
gadolinium gadolinium-based
4
contrast agents-a
4
agents-a review
4
review gadolinium-based
4

Similar Publications

Gadopiclenol Enables Reduced Gadolinium Dose While Maintaining Quality of Pulmonary Arterial Enhancement for Pulmonary MRA: An Opportunity for Improved Safety and Sustainability.

Invest Radiol

January 2025

From the Departments of Radiology (J.F.H., S.Y.C., J.-P.G., J.S., P.N., S.B.R., T.M.G.), Biomedical Engineering (S.B.R., T.M.G.), Medical Physics (S.Y.C., S.B.R., T.M.G.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, WI; and Department of Diagnostic and Interventional Radiology (J.F.H., J.-P.G.), University Hospital Würzburg, Würzburg, Germany.

Rationale And Objectives: Pulmonary magnetic resonance angiography (MRA) is an imaging method with proven utility for the exclusion of pulmonary embolism and avoids the need for ionizing radiation and iodinated contrast agents. High-relaxivity gadolinium-based contrast agents (GBCAs), such as gadopiclenol, can be used to reduce the required gadolinium dose for pulmonary MRA. The aim of this study was to compare the contrast enhancement performance of gadopiclenol with an established gadobenate dimeglumine-enhanced pulmonary MRA protocol.

View Article and Find Full Text PDF

Assessing the Association Between Gadolinium-Based Contrast Agents and Parkinson Disease: Insights From the Korean National Health Insurance Service Database.

Invest Radiol

January 2025

From the Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan, South Korea (C.K., C.K., Y.H.L.); Department of Urology, Ansan Hospital, Korea University College of Medicine, Ansan, South Korea (B.S.T.); and Department of Neurology, Ansan Hospital, Korea University College of Medicine, Ansan, South Korea (D.-Y.K.).

Objectives: This study aimed to investigate the association between the use of linear and macrocyclic gadolinium-based contrast agents (GBCAs) and the subsequent development of Parkinson disease (PD).

Methods: In this retrospective cohort study, data were extracted from the Korean National Health Insurance Service database, comprising 1,038,439 individuals. From this population, 175,125 adults aged 40 to 60 years with no history of brain disease were identified.

View Article and Find Full Text PDF

Background: Gadolinium-based contrast agents (GBCAs) are usually employed for glioma diagnosis. However, GBCAs raise safety concerns, lead to patient discomfort and increase costs. Parametric maps offer a potential solution by enabling quantification of subtle tissue changes without GBCAs, but they are not commonly used in clinical practice due to the need for specifically targeted sequences.

View Article and Find Full Text PDF

The widespread use of gadolinium-based contrast agents for magnetic resonance imaging (MRI) in recent decades has led to a growing demand for Gd and raised environmental concerns due to their direct discharge into wastewater systems. In response, we developed an electrochemical filtration method to recover Gd from patient urine following contrast-enhanced MRI. This method involves modifying a conventional vacuum filtration apparatus by introducing electrodes into the filter membrane, creating a strong electric field of ∼5 kV/m and a steep three-zone pH gradient within the filter membrane.

View Article and Find Full Text PDF

First in-human gadolinium K-edge imaging with spectral photon counting CT.

Diagn Interv Imaging

January 2025

Department of Cardiovascular and Thoracic Radiology, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon 69002, France; CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, University Claude Bernard Lyon 1, Villeurbanne 69100, France.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!