Comprehensive Characterization of Operon Activation in .

Int J Mol Sci

Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA.

Published: April 2024

Wildtype cells cannot grow on L-1,2-propanediol, as the operon within the fucose () regulon is thought to be silent in the absence of L-fucose. Little information is available concerning the transcriptional regulation of this operon. Here, we first confirm that operon expression is highly inducible by fucose and is primarily attributable to the upstream operon promoter, while the promoter within the 3'-end of is weak and uninducible. Using 5'RACE, we identify the actual transcriptional start site (TSS) of the main operon promoter, refuting the originally proposed TSS. Several lines of evidence are provided showing that the locus is within a transcriptionally repressed region on the chromosome. Operon activation is dependent on FucR and Crp but not SrsR. Two Crp-cAMP binding sites previously found in the regulatory region are validated, where the upstream site plays a more critical role than the downstream site in operon activation. Furthermore, two FucR binding sites are identified, where the downstream site near the first Crp site is more important than the upstream site. Operon transcription relies on Crp-cAMP to a greater degree than on FucR. Our data strongly suggest that FucR mainly functions to facilitate the binding of Crp to its upstream site, which in turn activates the promoter by efficiently recruiting RNA polymerase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11011485PMC
http://dx.doi.org/10.3390/ijms25073946DOI Listing

Publication Analysis

Top Keywords

operon activation
12
upstream site
12
operon
9
operon promoter
8
binding sites
8
downstream site
8
site operon
8
site
7
comprehensive characterization
4
characterization operon
4

Similar Publications

During growth, differentiates into subpopulations of motile individuals and non-motile chains, associated with dispersal and biofilm formation respectively. The two cell types are dictated by the activity of the alternative sigma factor SigD encoded as the penultimate gene of the 27 kb long flagellar operon. The frequency of SigD-ON motile cells is increased by the heteromeric transcription factor SwrA•DegU that activates the promoter.

View Article and Find Full Text PDF

Background: In biomanufacturing of surface-active agents, such as rhamnolipids, excessive foaming is a significant obstacle for the development of high-performing bioprocesses. The exploitation of the inherent tolerance of Pseudomonas putida KT2440, an obligate aerobic bacterium, to microaerobic conditions has received little attention so far. Here low-oxygen inducible promoters were characterized in biosensor strains and exploited for process control under reduction of foam formation by low aeration and stirring rates during biosynthesis of rhamnolipids.

View Article and Find Full Text PDF

Pangenomic analysis of the bacterial cellulose-producing genera Komagataeibacter and Novacetimonas.

Int J Biol Macromol

January 2025

Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA. Electronic address:

Bacterial cellulose (BC) holds significant commercial potential due to its unique structural and chemical properties, making it suitable for applications in electronics, medicine, and pharmaceuticals. However, large-scale BC production remains limited by challenges in bacterial performance. In this study, we compared 79 microbial genomes from three genera-Komagataeibacter, Novacetimonas, and Gluconacetobacter-to investigate their pangenomes, genetic diversity, and evolutionary relationships.

View Article and Find Full Text PDF

A new gene coding for an iron-containing enzyme was identified in the genome of Acinetobacter radioresistens. Bioinformatics analysis allowed the assignment of the protein to DyP peroxidases, due to the presence of conserved residues involved in heme binding and catalysis. Moreover, Ar-DyP is located in an operon coding also for other enzymes involved in iron uptake and regulation.

View Article and Find Full Text PDF

Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!