Extreme drought weather has occurred frequently in recent years, resulting in serious yield loss in tea plantations. The study of drought in tea plantations is becoming more and more intensive, but there are fewer studies on drought-resistant measures applied in actual production. Therefore, in this study, we investigated the effect of exogenous tea polyphenols on the drought resistance of tea plant by pouring 100 mg·L of exogenous tea polyphenols into the root under drought. The exogenous tea polyphenols were able to promote the closure of stomata and reduce water loss from leaves under drought stress. Drought-induced malondialdehyde (MDA) accumulation in tea leaves and roots was also significantly reduced by exogenous tea polyphenols. Combined transcriptomic and metabolomic analyses showed that exogenous tea polyphenols regulated the abnormal responses of photosynthetic and energy metabolism in leaves under drought conditions and alleviated sphingolipid metabolism, arginine metabolism, and glutathione metabolism in the root system, which enhanced the drought resistance of tea seedlings. Exogenous tea polyphenols induced jasmonic acid-isoleucine (JA-ILE) accumulation in the root system, and the jasmonic acid-isoleucine synthetase gene (TEA028623), jasmonic acid ZIM structural domain proteins (JAMs) synthesis genes (novel.22237, TEA001821), and the transcription factor MYC2 (TEA014288, TEA005840) were significantly up-regulated. Meanwhile, the flavonoid metabolic flow was significantly altered in the root; for example, the content of EGCG, ECG, and EGC was significantly increased. Thus, exogenous tea polyphenols enhance the drought resistance of tea plants through multiple pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11011871PMC
http://dx.doi.org/10.3390/ijms25073817DOI Listing

Publication Analysis

Top Keywords

exogenous tea
28
tea polyphenols
28
drought resistance
16
resistance tea
16
tea
14
drought
9
polyphenols enhance
8
enhance drought
8
tea plants
8
tea plantations
8

Similar Publications

Volatile cues of enhanced attractiveness to Parapanteles hyposidrae (Wilkinson) wasps mediated by jasmonic and salicylic acid pathways synergism in tea plant.

Pest Manag Sci

January 2025

Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs Key Laboratory of Tea Biology and Resource Utilization, Hangzhou, China.

Background: The jasmonic acid (JA) and salicylic acid (SA) pathways are often thought to interact antagonistically in plants when mediating anti-herbivore resistance. However, we previously found that the two pathways in tea plant interact synergistically when treated with 1.5 mmol/L methyl jasmonate (MeJA) and 20 mmol/L SA at 12 h intervals (MeJA+SA treatment).

View Article and Find Full Text PDF

Salt stress is one of the abiotic stresses affecting crop quality and yield, and the application of exogenous brassinosteroids (BRs) can be used in response to salt stress. However, the function of BR in tea plants under salt stress remains to be elucidated. This study investigated the effects of exogenous spraying of BR on the malondialdehyde, soluble sugar, soluble protein, and antioxidant enzyme activities in tea plants under salt stress and explored the expression changes in genes related to the synthesis pathways of proline and secondary metabolites (flavonoids and theanine).

View Article and Find Full Text PDF

Cold stress significantly limits the growth and yield of tea plants (Camellia sinensis (L.) O. Kuntze), particularly in northern China, may lead to huge economic losses.

View Article and Find Full Text PDF

Background: Heat stress is one of the main environmental factors limiting the growth, yield and quality of tea plants (). Trehalose involved in plant responses to multiple adverse environmental stresses, including heat stress. However, the roles of circular RNAs (circRNAs) and their involvement in the trehalose response to heat stress remain unknown.

View Article and Find Full Text PDF

Exogenous theanine application improves the fresh leaf yield and quality of an albino green tea Huangjinya.

Food Chem

March 2025

State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China. Electronic address:

Green tea made from the albino tea plant cultivar 'Huangjinya' is highly popular due to its umami taste. However, its cultivation and economic value are restricted by late sprouting, low yields, and insufficient aroma. In this study, we sprayed 0, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!