is the pathogen that most affects the salmon industry in Chile. Large quantities of antibiotics have been used to control it. In search of alternatives, we have developed [Cu(NN)]ClO where NN = 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one. The antibacterial capacity of [Cu(NN)]ClO was determined. Subsequently, the effect of the administration of [Cu(NN)]ClO on the growth of , modulation of the immune system and the intestinal microbiota was studied. Finally, the ability to protect against a challenge with was evaluated. The results obtained showed that the compound has an MIC between 15 and 33.9 μg/mL in four isolates. On the other hand, the compound did not affect the growth of the fish; however, an increase in the transcript levels of IFN-γ, IL-12, IL-1β, CD4, lysozyme and perforin was observed in fish treated with 40 μg/g of fish. Furthermore, modulation of the intestinal microbiota was observed, increasing the genera of beneficial bacteria such as and as well as potential pathogens such as and . Finally, the treatment increased survival in fish challenged with by more than 60%. These results demonstrate that the compound is capable of protecting fish against , probably by modulating the immune system and the composition of the intestinal microbiota.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11011784 | PMC |
http://dx.doi.org/10.3390/ijms25073700 | DOI Listing |
ACS Sens
January 2025
Department of Surgery, Division of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.
Necrotizing enterocolitis (NEC) is a devastating disease of the neonatal gastrointestinal tract. Volatile organic compounds (VOCs), odoriferous compounds released as a byproduct of bacterial metabolism, can be used as a proxy for gut health. We hypothesized that patients with NEC would have different microbial profiles and elicit different VOC signatures as assessed by gas chromatography/mass spectrometry (GC/MS) or an electronic nose compared to controls.
View Article and Find Full Text PDFmSphere
January 2025
Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
Treatment with antibiotics is a major risk factor for infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to growth and competition between the microbiota and for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to infection in 12 different microbial communities cultivated from healthy individuals.
View Article and Find Full Text PDFGut Microbes
December 2025
APC Microbiome Ireland, University College Cork, Cork, Ireland.
is a major cause of nosocomial diarrhea. As current antibiotic treatment failures and recurrence of infections are highly frequent, alternative strategies are needed for the treatment of this disease. This study explores the use of bacteriocins, specifically lacticin 3147 and pediocin PA-1, which have reported inhibitory activity against .
View Article and Find Full Text PDFWorld J Diabetes
January 2025
College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, Yunnan Province, China.
The onset and progression of type 2 diabetes mellitus (T2DM) are strongly associated with imbalances in gut bacteria, making the gut microbiome a new potential therapeutic focus. This commentary examines the recent publication in . The article explores the association between T2DM and gut microbiota, with a focus on the pathophysiological changes related to dysbiosis.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
School of Life Health Information Science and Engineering, Chongqing Post and Communications University, Chongqing 400065, China.
This editorial, inspired by a recent study published in the , covers the research findings on microbiota changes in various diseases. In recurrent colorectal polyps, the abundances of , , and increase, while those of and decrease. This dysbiosis may promote the formation and recurrence of polyps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!