The aggregation-induced emission (AIE) effect exhibits a significant influence on the development of luminescent materials and has made remarkable progress over the past decades. The advancement of high-performance AIE materials requires fast and accurate predictions of their photophysical properties, which is impeded by the inherent limitations of quantum chemical calculations. In this work, we present an accurate machine learning approach for the fast predictions of quantum yields and wavelengths to screen out AIE molecules. A database of about 563 organic luminescent molecules with quantum yields and wavelengths in the monomeric/aggregated states was established. Individual/combined molecular fingerprints were selected and compared elaborately to attain appropriate molecular descriptors. Different machine learning algorithms combined with favorable molecular fingerprints were further screened to achieve more accurate prediction models. The simulation results indicate that combined molecular fingerprints yield more accurate predictions in the aggregated states, and random forest and gradient boosting regression algorithms show the best predictions in quantum yields and wavelengths, respectively. Given the successful applications of machine learning in quantum yields and wavelengths, it is reasonable to anticipate that machine learning can serve as a complementary strategy to traditional experimental/theoretical methods in the investigation of aggregation-induced luminescent molecules to facilitate the discovery of luminescent materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11012915 | PMC |
http://dx.doi.org/10.3390/ma17071664 | DOI Listing |
Viruses
November 2024
Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany.
The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera.
View Article and Find Full Text PDFViruses
November 2024
Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
[...
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
Climate change caused by greenhouse gas (GHG) emissions is an escalating global issue, with the transportation sector being a significant contributor, accounting for approximately a quarter of all energy-related GHG emissions. In the transportation sector, vehicle emissions testing is a key part of ensuring compliance with environmental regulations. The Vehicle Certification Agency (VCA) of the UK plays a pivotal role in certifying vehicles for compliance with emissions and safety standards.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!