Binary Ti-Cu (x = 1.6 and 3.0 wt.%) alloys were produced by the application of mechanical alloying and powder metallurgy processes. The influence of the copper concentration in titanium on the microstructure and properties of bulk alloys was investigated. The synthesized materials were characterized by an X-ray diffraction technique, scanning electron microscopy, and chemical composition determination. The electrochemical and corrosion properties were also investigated. Cold compaction and sintering reduced the content of α-Ti content in Ti98.4-Cu1.6 and Ti97-Cu3 alloys to 92.4% and 83.7%, respectively. Open Circuit Potential measurements showed a positive shift after the addition of copper, suggesting a potential deterioration in the corrosion resistance of the Ti-Cu alloys compared to pure Ti. Electrochemical Impedance Spectroscopy analysis revealed significant improvement in electrical conductivity after the addition of copper. Corrosion testing results demonstrated compromised corrosion resistance of Ti-Cu alloys compared to pure Ti. In summary, the comprehensive investigation of Ti-Cu alloys provides valuable insights for potential applications in biosensing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11012745 | PMC |
http://dx.doi.org/10.3390/ma17071473 | DOI Listing |
Materials (Basel)
October 2024
State Key Laboratory of Advanced Brazing Filler Metals & Technology, Zhengzhou Research Institute of Mechanical Engineering Co., Ltd., Zhengzhou 450001, China.
Herein, we fabricated a low-melting-point Zr-16Ti-6Cu-8Ni-6Co eutectic filler based on a Zr-Ti-Cu-Ni filler to achieve effective joining of a Ti6Al4V (TC4) titanium alloy. The temperature at which the brittle intermetallic compound (IMC) layer in the seam completely disappeared was reduced from 920 °C to 900 °C, which broadened the temperature range of the Zr-based filler, brazing the TC4 without a brittle IMC layer. The shear strength of the Zr-16Ti-6Cu-8Ni-6Co brazed joint increased by 113% more than that of the Zr-16Ti-9Cu-11Ni brazed joint at 900 °C.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
Electrocatalytic carbon dioxide reduction (CORR) technology enables the conversion of excessive CO into high-value fuels and chemicals, thereby mitigating atmospheric CO concentrations and addressing energy scarcity. Single-atom alloys (SAAs) possess the potential to enhance the CORR performance by full utilization of atoms and breaking linear scaling relationships. However, quickly screening high-performance metal portfolios of SAAs remains a formidable challenge.
View Article and Find Full Text PDFMaterials (Basel)
August 2024
Xi'an Key Laboratory of High Performance Oil and Gas Field Materials, School of Material Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China.
The development of titanium alloys is limited by issues such as low hardness, poor wear resistance, and sensitivity to adhesive wear. Using laser cladding technology to create high-hardness wear-resistant coatings on the surface of titanium alloys is an economical and efficient method that can enhance their surface hardness and wear resistance. This paper presents the preparation of two types of nickel-based composite coatings, Ni60-Ti-Cu-xBC and Ni60-Ti-Cu-BC-xCeO, on the surface of TC4 titanium alloy using laser cladding.
View Article and Find Full Text PDFInt J Nanomedicine
July 2024
Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
Colloids Surf B Biointerfaces
June 2024
Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, People's Republic of China. Electronic address:
The three-dimensional-printed Ti6Al4V implant (3DTi) has been widely accepted for the reconstruction of massive bone defects in orthopedics owing to several advantages, such as its tailored shape design, avoiding bone graft and superior bone-implant interlock. However, the osteoinduction activity of 3DTi is inadequate when applied clinically even though it exhibits osteoconduction. This study developes a comprehensive coatless strategy for the surface improvement of 3DTi through copper (Cu) ion implantation and ultraviolet (UV) photofunctionalization to enhance osteoinductivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!