The morphology of organic films plays a pivotal role in determining the performance of transistor devices. While the dip-coating technique is capable of producing highly oriented organic films, it often encounters challenges such as limited coverage and the presence of defects in gaps between strips, adversely affecting device performance. In this study, we address these challenges by increasing solution viscosity through the incorporation of a substantial proportion of dielectric polymers, thereby enhancing the participation of additional molecules during the film formation process when pulled up. This method produces continuous and oriented organic films with a notable absence of gaps, significantly improving the carrier mobility of transistor devices by more than twofold. Importantly, the fabricated devices exhibit remarkable reliability, showing no hysteresis even after 200 cycles of measurement. Furthermore, the current and threshold voltages of the devices demonstrate exceptional stability, maintaining steady after 10,000 s of bias measurement. This approach provides a solution for the cost-effective and large-scale production of organic transistors, contributing significantly to the advancement of organic electronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11012522 | PMC |
http://dx.doi.org/10.3390/ma17071465 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!