This study evaluated the feasibility of contextually producing hydrogen, microbial proteins, and polyhydroxybutyrate (PHB) using a mixed culture of purple phototrophic bacteria biomass under photo fermentative conditions. To this end, three consecutive batch tests were conducted to analyze the biomass growth curve and to explore the potential for optimizing the production process. Experimental findings indicated that inoculating reactors with microorganisms from the exponential growth phase reduced the duration of the process. Furthermore, the most effective approach for simultaneous hydrogen production and the valorization of microbial biomass was found when conducting the process during the exponential growth phase of the biomass. At this stage, achieved after 3 days of fermentation, the productivities of hydrogen, PHB, and microbial proteins were measured at 63.63 L/m d, 0.049 kg/m d, and 0.045 kg/m d, respectively. The biomass composition comprised a total intracellular compound percentage of 56%, with 27% representing PHB and 29% representing proteins. Under these conditions, the estimated daily revenue was maximized, amounting to 0.6 $/m d.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013808 | PMC |
http://dx.doi.org/10.3390/molecules29071679 | DOI Listing |
Commun Biol
December 2024
Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
Purple phototrophic bacteria produce two kinds of light-harvesting complexes that function to capture and transmit solar energy: the core antenna (LH1) and the peripheral antenna (LH2). The apoproteins of these antennas, encoded respectively by the genes pufBA and pucBA within and outside the photosynthetic gene cluster, respectively, exhibit conserved amino acid sequences and structural topologies suggesting they were derived from a shared ancestor. Here we present the structures of two photosynthetic complexes from Roseospirillum (Rss.
View Article and Find Full Text PDFBiotechnol Rep (Amst)
December 2024
Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar.
This research looked at how three different light intensities (1600, 4300, and 7200 lx) affect the biomass development, treatment of fuel synthesis wastewater and the recovery of valuable bioproducts between biofilm and suspended growth in a purple-bacteria enriched photobioreactor. Each condition was run in duplicate using an agricultural shade cloth as the biofilm support media in a continuously mixed batch reactor. The results showed that the highest chemical oxygen demand (COD) removal rate (56.
View Article and Find Full Text PDFBiochemistry
January 2025
Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
is a hot spring purple nonsulfur phototrophic bacterium that contains bacteriochlorophyll (BChl) . Here, we present a 2.21 Å cryo-EM structure of the thermostable light-harvesting 1-reaction center (LH1-RC) complex from .
View Article and Find Full Text PDFWater Res
February 2025
Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore. Electronic address:
Biohydrogen is gaining popularity as a clean and cost-effective energy source. Among the various production methods, photo fermentation (PF) with purple phototrophic bacteria (PPB) has shown great opportunity due to its high hydrogen yield. In practice, this yield is influenced by several factors, with the carbon source, particularly simple organic acid, being a key element that has attracted considerable research interest.
View Article and Find Full Text PDFCommun Biol
November 2024
Department of Chemical and Environmental Engineering, High School of Experimental Sciences and Technology, University Rey Juan Carlos, Madrid, Spain.
Reducing greenhouse gas emissions is critical for humanity nowadays, but it can be beneficial by developing engineered systems that valorize CO into commodities, thus mimicking nature's wisdom. Purple phototrophic bacteria (PPB) naturally accept CO into their metabolism as a primary redox sink system in photo-heterotrophy. Dedicated use of this feature for developing sustainable processes (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!