The fruits of are often purchased for their vitamin C-rich juice, while the fruit peel and the tree leaves are discarded as wastes. This study obtained the chemical profiles of the essential oils (EOs) of wastes (the peel and leaves), evaluated their medicinal value as antioxidants, their potential for sustainable use in agriculture as an insecticide for post-harvest preservation of grains, and their potential as a bioresource in livestock feed formulations. The EOs were isolated from leaves and peel using a hydro-distillation method on a Clevenger apparatus. The oil constituents were identified using the gas chromatography-mass spectrometry (GC-MS) hyphenated technique. The oils were evaluated for their in vitro antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power methods. An insecticidal study was conducted using contact toxicity, fumigation, and repellence bioassay methods against (maize weevils). Finally, the predicted income from using lemon peel as an alternative or substitute ingredient for maize in livestock feed formulations was obtained through a conventional simulation method. Chemically, limonene was found to be present in all the EOs analyzed (12-52%), while α-pinene was only found in the fresh leaf and peel oils (13.3% and 10.6%). Caryophyllene oxide was identified as the major component of the dried leaf oil (17.7%). At 20 µg m, the dry peel oil exhibited the highest inhibitory activity (52.41 ± 0.26%) against the DPPH radical, which was comparable to L-ascorbic acid (a standard antioxidant) at 54.25 ± 3.55%. The insecticidal study revealed that the dry peel oil is a better insect repellent (73.33 ± 6.95% at 10 µL) and fumigant (LC = 0.17 µL g after 48 h) natural agent compared to the peel oil. Conversely, the dry peel oil showed a better contact activity (LC = 1.69 µL g) against the maize weevils compared to the dry leaf oil. The simulation study showed the cost of using dry lemon peel as an alternative to maize in livestock feed formulation to be ZAR 2.8 billion, compared against the higher cost of feed formulation with maize, which currently stands at ZAR 24.9 billion. This study has shown that wastes (the peel and leaves) contain EOs with unique chemical profiles, valuable medicinal properties as free radical scavengers, and considerable insecticidal properties for agricultural use in post-harvest grain preservation, presenting a cost-effective and promising bioresource for livestock feed production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013870PMC
http://dx.doi.org/10.3390/molecules29071675DOI Listing

Publication Analysis

Top Keywords

livestock feed
16
peel oil
16
dry peel
12
peel
11
chemical profiles
8
wastes peel
8
peel leaves
8
bioresource livestock
8
feed formulations
8
insecticidal study
8

Similar Publications

Modelling mixed crop-livestock systems and climate impact assessment in sub-Saharan Africa.

Sci Rep

January 2025

Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, D-53115, Bonn, Germany.

Climate change significantly challenges smallholder mixed crop-livestock (MCL) systems in sub-Saharan Africa (SSA), affecting food and feed production. This study enhances the SIMPLACE modeling framework by incorporating crop-vegetation-livestock models, which contribute to the development of sustainable agricultural practices in response to climate change. Applying such a framework in a domain in West Africa (786,500 km) allowed us to estimate the changes in crop (Maize, Millet, and Sorghum) yield, grass biomass, livestock numbers, and greenhouse gas emission in response to future climate scenarios.

View Article and Find Full Text PDF

Reducing enteric methane emissions from livestock is a key environmental challenge, as methane is a major pollutant. The complexity of animal biology and diverse diet compositions make it difficult to develop strategy to control methane production. This study examined the use of plant phenolic extracts of Madhuca longifolia (ML-7) as a feed additive combined with various ruminant diets and dosages to find an effective supplement to reduce methane emissions.

View Article and Find Full Text PDF

An apparent outbreak of fenugreek forage toxicosis occurred in a beef cattle herd near Moose Jaw, Saskatchewan in February-May 2022. The herd had consumed fenugreek hay from late fall to early winter. Clinical signs included various degrees of weakness, ataxia, knuckling, walking on hocks, and recumbency.

View Article and Find Full Text PDF

Salt is a major abiotic factor significantly affecting plant growth and development. Alfalfa (Medicago sativa L.), a crucial perennial crop for livestock feed, shows significant differences in salt tolerance among different varieties.

View Article and Find Full Text PDF

It is currently uncertain how selection of more efficient animals might impact other traits such as resilience (which, in this context, is defined as the ability of an animal to sustain or revert quickly to its previous production level and health status after a disturbance), especially in small ruminants. However, improving, or at least maintaining, resilience is of utmost importance to ensure livestock production in the face of external perturbances, which are expected to become more prevalent in the near future due to climate change and global instability. This study was conducted to investigate whether a nutritional challenge consisting of animals receiving only 70% of their voluntary feed intake (DMI) for 26 d, might differentially affect the response of high- and low-feed efficiency (FE) sheep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!