A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Luteolin-7--β-d-glucuronide Ameliorates Cerebral Ischemic Injury: Involvement of RIP3/MLKL Signaling Pathway. | LitMetric

Luteolin-7-O-β-d-glucuronide (LGU) is a major active flavonoid glycoside compound that is extracted from Hance, and it is a Chinese medicinal herb mainly used for the treatment of coronary heart disease, angina pectoris, cerebral infarction, etc. In the present study, the neuroprotective effect of LGU was investigated in an oxygen glucose deprivation (OGD) model and a middle cerebral artery occlusion (MCAO) rat model. In vitro, LGU was found to effectively improve the OGD-induced decrease in neuronal viability and increase in neuronal death by a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) leakage rate assay, respectively. LGU was also found to inhibit OGD-induced intracellular Ca overload, adenosine triphosphate (ATP) depletion, and mitochondrial membrane potential (MMP) decrease. By Western blotting analysis, LGU significantly inhibited the OGD-induced increase in expressions of receptor-interacting serine/threonine-protein kinase 3 (RIP3) and mixed lineage kinase domain-like protein (MLKL). Moreover, molecular docking analysis showed that LGU might bind to RIP3 more stably and firmly than the RIP3 inhibitor GSK872. Immunofluorescence combined with confocal laser analyses disclosed that LGU inhibited the aggregation of MLKL to the nucleus. Our results suggest that LGU ameliorates OGD-induced rat primary cortical neuronal injury via the regulation of the RIP3/MLKL signaling pathway in vitro. In vivo, LGU was proven, for the first time, to protect the cerebral ischemia in a rat middle cerebral artery occlusion (MCAO) model, as shown by improved neurological deficit scores, infarction volume rate, and brain water content rate. The present study provides new insights into the therapeutic potential of LGU in cerebral ischemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013290PMC
http://dx.doi.org/10.3390/molecules29071665DOI Listing

Publication Analysis

Top Keywords

lgu
10
rip3/mlkl signaling
8
signaling pathway
8
middle cerebral
8
cerebral artery
8
artery occlusion
8
occlusion mcao
8
analysis lgu
8
lgu inhibited
8
cerebral ischemia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!