SARS-CoV-2 is the virus responsible for a respiratory disease called COVID-19 that devastated global public health. Since 2020, there has been an intense effort by the scientific community to develop safe and effective prophylactic and therapeutic agents against this disease. In this context, peptides have emerged as an alternative for inhibiting the causative agent. However, designing peptides that bind efficiently is still an open challenge. Here, we show an algorithm for peptide engineering. Our strategy consists of starting with a peptide whose structure is similar to the interaction region of the human ACE2 protein with the SPIKE protein, which is important for SARS-COV-2 infection. Our methodology is based on a genetic algorithm performing systematic steps of random mutation, protein-peptide docking (using the PyRosetta library) and selecting the best-optimized peptides based on the contacts made at the peptide-protein interface. We performed three case studies to evaluate the tool parameters and compared our results with proposals presented in the literature. Additionally, we performed molecular dynamics (MD) simulations (three systems, 200 ns each) to probe whether our suggested peptides could interact with the spike protein. Our results suggest that our methodology could be a good strategy for designing peptides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013848PMC
http://dx.doi.org/10.3390/molecules29071577DOI Listing

Publication Analysis

Top Keywords

spike protein
12
protein sars-cov-2
8
designing peptides
8
peptides
6
approach engineering
4
engineering peptides
4
peptides competitive
4
competitive inhibition
4
inhibition sars-cov-2
4
sars-cov-2 spike
4

Similar Publications

Impedimetric Sensor for SARS-CoV-2 Spike Protein Detection: Performance Assessment with an ACE2 Peptide-Mimic/Graphite Interface.

Biosensors (Basel)

December 2024

Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.

The COVID-19 pandemic has prompted the need for the development of new biosensors for SARS-CoV-2 detection. Particularly, systems with qualities such as sensitivity, fast detection, appropriate to large-scale analysis, and applicable in situ, avoiding using specific materials or personnel to undergo the test, are highly desirable. In this regard, developing an electrochemical biosensor based on peptides derived from the angiotensin-converting enzyme receptor 2 (ACE2) is a possible answer.

View Article and Find Full Text PDF

Preventing immune escape of SARS-CoV-2 variants is crucial in vaccine development to ensure broad protection against the virus. Conformational epitopes beyond the RBD region are vital components of the spike protein but have received limited attention in the development of broadly protective SARS-CoV-2 vaccines. In this study, we used a DNA prime-protein boost regimen to evaluate the broad cross-neutralization potential of immune response targeting conformational non-RBD region against SARS-CoV-2 viruses in mice.

View Article and Find Full Text PDF

Despite being mostly neglected in structural biology, the C-terminal Regions (CTRs) are studied to be multifunctional in humans as well as in viruses. Previously, SARS-CoV-2 Spike and NSP1 proteins' CTRs are observed to be disordered, and experimental evidence showed a gain of structure properties in different physiological environments. In this line, we have investigated the structural dynamics of CTR (residues 38-61) of SARS-CoV-2 ORF6 protein, disrupting bidirectional transport between the nucleus and cytoplasm.

View Article and Find Full Text PDF

Developing intranasal vaccines against pandemics and devastating airborne infectious diseases is imperative. The superiority of intranasal vaccines over injectable systemic vaccines is evident, but developing effective intranasal vaccines presents significant challenges. Fusing a protein antigen with the catalytic domain of cholera toxin (CTA1) and the two-domain D of staphylococcal protein A (DD) has significant potential for intranasal vaccines.

View Article and Find Full Text PDF

AdCLD-CoV19-1, a chimeric adenovirus-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, was previously reported to elicit robust antibody responses in mice and non-human primates after a single dose. In this study, we conducted a systems serology analysis to investigate changes in humoral immune responses induced by varying doses of the AdCLD-CoV19-1 vaccine in a phase I clinical trial. Serum samples from participants receiving either a low or a high dose of the vaccine were analyzed for antibody features against prototype SARS-CoV-2 spike (S) domains (full-length S, S1, S2, and receptor binding domain), as well as Fc receptor binding and effector functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!