This study investigates the synthesis of mesophase pitch using low-cost fluid catalytic cracking (FCC) slurry and waste fluid asphaltene (WFA) as raw materials through the co-carbonization method. The resulting mesophase pitch product and its formation mechanism were thoroughly analyzed. Various characterization techniques, including polarizing microscopy, softening point measurement, Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), were employed to characterize and analyze the properties and structure of the mesophase pitch. The experimental results demonstrate that the optimal optical texture of the mesophase product is achieved under specific reaction conditions, including a temperature of 420 °C, pressure of 1 MPa, reaction time of 6 h, and the addition of 2% asphaltene. It was observed that a small amount of asphaltene contributes to the formation of mesophase pitch spheres, facilitating the development of the mesophase. However, excessive content of asphaltene may cover the surface of the mesophase spheres, impeding the contact between them and consequently compromising the optical texture of the mesophase pitch product. Furthermore, the inclusion of asphaltene promotes polymerization reactions in the system, leading to an increase in the average molecular weight of the mesophase pitch. Notably, when the amount of asphaltene added is 2%, the mesophase pitch demonstrates the lowest I/I value, indicating superior molecular orientation and larger graphite-like microcrystals. Additionally, researchers found that at this asphaltene concentration, the mesophase pitch exhibits the highest degree of order, as evidenced by the maximum diffraction angle (2θ) and stacking height (Lc) values, and the minimum d value. Moreover, the addition of asphaltene enhances the yield and aromaticity of the mesophase pitch and significantly improves the thermal stability of the resulting product.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013708 | PMC |
http://dx.doi.org/10.3390/molecules29071500 | DOI Listing |
J Phys Chem B
December 2024
Centre for Nano and Soft Matter Sciences, Bengaluru 562162, India.
We describe the first investigations on the influence of an imposed network on the photonic band gap (PBG) structure of the liquid crystal (LC) phase through the polymer template technique. The technique consists of using a cholesteric (Ch) phase as a base for photopolymerizing a difunctional monomer, which is then removed after polymerization, leaving only the polymer scaffold template. The templated structure obtained is utilized to adjust the PBG structure of the filled LC material, exhibiting both a one-dimensional PBG (Ch phase) and a three-dimensional PBG structure (TGBC* phase with smectic C* blocks).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain; Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Türkiye. Electronic address:
Chitin properties are known to vary depending on animal taxa, organismal source, and specific skeletal segments; However, the influence of these source-dependent variations on the physicochemical characteristics of chitin nanocrystals, particularly their Bouligand architecture, remains largely unexplored. Herein, chitin nanocrystals were isolated from seven different skeletal segments of C. aurata and characterized.
View Article and Find Full Text PDFACS Omega
November 2024
State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China.
Saturate (Sa), the lightest component in fluid catalytic cracking (FCC) slurry oil, exhibits a poorly understood influence on the formation and development of mesophase, thereby constraining the production of premium-quality mesophase pitch. To address this issue, Sa is isolated from FCC slurry oil, and its concentration is modulated to investigate its impact on the formation and development of mesophase. The results indicate that Sa contains a high concentration of long alkane side chains and naphthenic structures, which render it an effective "lubricant" and "activator" within the reaction system.
View Article and Find Full Text PDFACS Omega
November 2024
China Energy Coal Coking Company, Wuhai , Inner Mongolia 016030, China.
Refined coal tar pitch (RCTP) with a quinoline insoluble (QI) content less than 0.01% was obtained from Wuhai coal tar pitch (CTP), which was used as a raw material to prepare needle coke by carbonization and calcination experiments. In this work, the effects of carbonization time, carbonization temperature, and carbonization pressure on the optical structure of green coke and the microstructure of needle coke were investigated.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China.
Mesophase pitch is regarded as a profoundly promising candidate for the production of advanced carbon-based multifunctional materials such as carbon fibers, carbon microspheres, and carbon foams owing to its excellent intrinsic properties. Consequently, a deeper understanding of pyrolytic chemistry is indispensable for the efficient and environmentally friendly utilization of mesophase pitch. In this study, details about the structure compositions and microscopic morphologies of petroleum-driven mesophase pitch (pMP) were investigated through ultimate, FTIR, XPS, and C-NMR analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!