A multi-residue UHPLC-MS/MS analytical method, previously developed for monitoring 52 pharmaceuticals in drinking water, was used to analyse these pharmaceuticals in wastewater originating from healthcare facilities in the Czech Republic. Furthermore, the methodology was expanded to include the evaluation of the effectiveness of drug removal in Czech wastewater treatment plants (WWTPs). Of the 18 wastewater samples analysed by the validated UHPLC-MS/MS, each sample contained at least one quantifiable analyte. This study reveals the prevalence of several different drugs; mean concentrations of 702 μg L of iomeprol, 48.8 μg L of iopromide, 29.9 μg L of gabapentin, 42.0 μg L of caffeine and 82.5 μg L of paracetamol were present. An analysis of 20 samples from ten WWTPs revealed different removal efficiencies for different analytes. Paracetamol was present in the inflow samples of all ten WWTPs and its removal efficiency was 100%. Analytes such as caffeine, ketoprofen, naproxen or atenolol showed high removal efficiencies exceeding 80%. On the other hand, pharmaceuticals like furosemide, metoprolol, iomeprol, zolpidem and tramadol showed lower removal efficiencies. Four pharmaceuticals exhibited higher concentrations in WWTP effluents than in the influents, resulting in negative removal efficiencies: warfarin at -9.5%, indomethacin at -53%, trimethoprim at -54% and metronidazole at -110%. These comprehensive findings contribute valuable insights to the pharmaceutical landscape of wastewater from healthcare facilities and the varied removal efficiencies of Czech WWTPs, which together with the already published literature, gives a more complete picture of the burden on the aquatic environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013191PMC
http://dx.doi.org/10.3390/molecules29071480DOI Listing

Publication Analysis

Top Keywords

removal efficiencies
20
monitoring pharmaceuticals
8
wastewater samples
8
effectiveness drug
8
removal
8
drug removal
8
wastewater treatment
8
treatment plants
8
healthcare facilities
8
samples ten
8

Similar Publications

Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics.

Environ Sci Pollut Res Int

January 2025

Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia.

This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g.

View Article and Find Full Text PDF

Ce1-xMnxVO4 with Improved Activity for Low-Temperature Catalytic Reduction of NO with NH3.

Chem Asian J

January 2025

Fudan University, Department of Environmental Science and Engineering, Shanghai Handan Road 220, 200433, Shanghai, CHINA.

Novel Ce1-xMnxVO4 catalysts prepared via modified hydrothermal synthesis were used in selective catalytic reduction of NO using NH3 (NH3-SCR). The Ce1-xMnxVO4 catalysts displayed optimum NO removal efficiency at 250 oC. Physicochemical properties including crystal type, morphology, particle size, elemental composition, BET surface area, chemical bond, and valence state were studied by XRD, TEM, EDS, N2 adsorption-desorption, Raman spectroscopy, and XPS.

View Article and Find Full Text PDF

Stem cells prevent long-term deterioration of renal function after renal artery revascularization in a renovascular hypertension model in rats.

Sci Rep

January 2025

Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.

Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.

View Article and Find Full Text PDF

In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.

View Article and Find Full Text PDF

Three composites based on Poly (meta-aminophenol) (PmAP), (3-aminopropyl) triethoxysilane (APTES) and graphene oxide (GO) were synthesized with initial GO dispersion of 3.3, 6.6, and 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!