Various Strategies for the Immobilization of a Phospholipase C from for the Modulation of Its Biochemical Properties.

Molecules

Laboratory of Microbiology and Food Biocatalysis, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9, UAM Campus, Cantoblanco, 28049 Madrid, Spain.

Published: March 2024

In this study, the effect of various immobilization methods on the biochemical properties of phospholipase C (PLC) from obtained from the oily soil located in Sfax, Tunisia, was described. Different supports were checked: octyl sepharose, glyoxyl agarose in the presence of N-acetyl cysteine, and Q-sepharose. In the immobilization by hydrophobic adsorption, a hyperactivation of the PLC was obtained with a fold of around 2 times. The recovery activity after immobilization on Q-sepharose and glyoxyl agarose in the presence of N-acetyl cysteine was 80% and 58%, respectively. Furthermore, the biochemical characterization showed an important improvement in the three immobilized enzymes. The performance of the various immobilized PLC was compared with the soluble enzyme. The derivatives acquired using Q-sepharose, octyl sepharose, and glyoxyl agarose were stable at 50 °C, 60 °C, and 70 °C. Nevertheless, the three derivatives were more stable in a large range of pH than the soluble enzyme. The three derivatives and the free enzyme were stable in 50% (/) ethanol, hexane, methanol, and acetone. The glyoxyl agarose derivative showed high long-term storage at 4 °C, with an activity of 60% after 19 days. These results suggest the sustainable biotechnological application of the developed immobilized enzyme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013441PMC
http://dx.doi.org/10.3390/molecules29071467DOI Listing

Publication Analysis

Top Keywords

glyoxyl agarose
16
biochemical properties
8
octyl sepharose
8
sepharose glyoxyl
8
agarose presence
8
presence n-acetyl
8
n-acetyl cysteine
8
soluble enzyme
8
°c °c
8
three derivatives
8

Similar Publications

Ficin fully immobilized on Asp-agarose beads at pH 7 but not on an aminated support. This made enzyme adsorption plus glutaraldehyde modification non-viable for this enzyme. Modifying glyoxyl-agarose beads with mixtures of Asp and 1,6-hexamethylenediamine (HA) at different ratios, mixed anion/cation exchanger supports were built.

View Article and Find Full Text PDF

Changes in ficin specificity by different substrate proteins promoted by enzyme immobilization.

Enzyme Microb Technol

December 2024

Departamento de Biocatalisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain. Electronic address:

Ficin extract has been immobilized using different supports: glyoxyl and Aspartic/1,6 hexamethylenediamine (Asp/HA) agarose beads. The latter was later submitted to glutaraldehyde modification to get covalent immobilization. The activities of these 3 kinds of biocatalysts were compared utilizing 4 different substrates, casein, hemoglobin and bovine serum albumin and benzoyl-arginine-p-nitroanilide at pH 7 and 5.

View Article and Find Full Text PDF

The development of strategies that can permit to adjust the size specificity of immobilized proteases by the generation of steric hindrances may enlarge its applicability. Using as a model ficin immobilized on glyoxyl agarose, two strategies were assayed to generate tailor made steric hindrances. First, ficin has been coimmobilized on supports coated with large proteins (hemoglobin or bovine serum albumin (BSA)).

View Article and Find Full Text PDF

Ficin has been immobilized at full loading on glyoxyl agarose beads. Then, ficin was blocked with 2,2'-dipyridyldisulfide. To be effective, the modification must be performed in the presence of 0.

View Article and Find Full Text PDF

A naringinase complex was chemically aminated prior to its immobilization on glyoxyl-agarose to develop a robust biocatalyst for juice debittering. The effects of amination on the optimal pH and temperature, thermal stability, and debittering performance were analyzed. Concentration of amino groups on catalysts surface increased in 36 %.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!