The determination of the potential role and advantages of artificial intelligence-based models in the field of surgery remains uncertain. This research marks an initial stride towards creating a multimodal model, inspired by the Video-Audio-Text Transformer, that aims to reduce negative occurrences and enhance patient safety. The model employs text and image embedding state-of-the-art models (ViT and BERT) to assess their efficacy in extracting the hidden and distinct features from the surgery video frames. These features are then used as inputs for convolution-free Transformer architectures to extract comprehensive multidimensional representations. A joint space is then used to combine the text and image features extracted from both Transformer encoders. This joint space ensures that the relationships between the different modalities are preserved during the combination process. The entire model was trained and tested on laparoscopic cholecystectomy (LC) videos encompassing various levels of complexity. Experimentally, a mean accuracy of 91.0%, a precision of 81%, and a recall of 83% were reached by the model when tested on 30 videos out of 80 from the Cholec80 dataset.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11011728 | PMC |
http://dx.doi.org/10.3390/diagnostics14070681 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!