This research investigates the impact of polysaccharides (DOP) with different molecular weights on antioxidant effects, lifespan enhancement, and obesity reduction, utilizing both in vitro analyses and the () model. Through a series of experiments-ranging from the extraction and modification of polysaccharides, Gel Permeation Chromatography (GPC), and analysis of composition to the evaluation of antioxidant capabilities, this study thoroughly examines DOP and its derivatives (DOP5, DOP15, DOP25) produced via HO-Fe degradation. The results reveal a direct relationship between the molecular weight of polysaccharides and their bioactivity. Notably, DOP5, with its intermediate molecular weight, demonstrated superior antioxidant properties, significantly extended the lifespan, and improved the health of Furthermore, DOP15 appeared to regulate lipid metabolism by affecting crucial lipid metabolism genes, including fat-4, fat-5, fat-6, sbp-1, and acs-2. These findings highlight the potential application of DOP derivatives as natural antioxidants and agents against obesity, contributing to the development of functional foods and dietary supplements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11011358PMC
http://dx.doi.org/10.3390/foods13071040DOI Listing

Publication Analysis

Top Keywords

molecular weight
12
dop derivatives
8
lipid metabolism
8
impact molecular
4
weight variations
4
polysaccharides
4
variations polysaccharides
4
antioxidant
4
polysaccharides antioxidant
4
antioxidant activity
4

Similar Publications

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Levan is a fructan-type homopolysaccharide that has gained increasing attention due to its unique properties and promising applications. It is a fructose-based polymer produced through microbial fermentation by diverse microorganisms, including bacteria, yeasts and archaea. The ongoing research on levan mainly focuses on optimizing production processes, elucidating its biological functions, and uncover novel applications.

View Article and Find Full Text PDF

In this study, water-soluble fraction (WSF), chelator-soluble fraction (CSF), and sodium carbonate-soluble fraction (NSF) were sequentially fractionated from pear pulp, of which physicochemical properties and hypolipidemic activities in vitro were evaluated. They showed distinct monosaccharide composition, surface morphology, nuclear magnetic resonance (NMR), and Fourier transform infrared (FT-IR) spectrums. WSF and NSF were identified as high methyl-esterified pectic polysaccharides with degrees of methyl esterification (DM) of 85.

View Article and Find Full Text PDF

Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).

View Article and Find Full Text PDF

Lactobacillus acidophilus YL01 and its exopolysaccharides ameliorate obesity and insulin resistance in obese mice via modulating intestinal specific bacterial groups and AMPK/ACC signaling pathway.

Int J Biol Macromol

January 2025

College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China. Electronic address:

Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!