Cold atmospheric plasma (CAP) is a novel non-thermal technology with significant potential for use in meat processing to prolong shelf life. The objective of the study was to evaluate the efficiency of CAP treatment on the natural microbiota and quality traits of pork stored for 8 days at 4 °C. CAP treatment was applied by employing piezoelectric direct discharge technology to treat pork samples for 0, 3, 6, and 9 min. Reductions of approximately 0.8-1.7 log CFU/g were observed in total viable counts (TVC) and spp. levels for CAP treatments longer than 3 min, immediately after treatment. A storage study revealed that CAP-treated pork (>6 min) had significantly lower levels of TVC, spp., and throughout storage. Regarding quality traits, CAP application for longer than 3 min significantly increased water retention and yellowness and decreased meat redness compared to untreated pork. However, other parameters such as pH, tenderness, and lightness exhibited no statistically significant differences between untreated and CAP-treated pork. Lipid oxidation levels were higher only for the 9-min treatment compared to untreated pork. Our results revealed that CAP is a promising technology that can extend the microbiological shelf life of pork during refrigeration storage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11011429PMC
http://dx.doi.org/10.3390/foods13071015DOI Listing

Publication Analysis

Top Keywords

cold atmospheric
8
atmospheric plasma
8
natural microbiota
8
microbiota quality
8
pork
8
shelf life
8
cap treatment
8
quality traits
8
tvc spp
8
longer min
8

Similar Publications

The global increase in urolithiasis prevalence has led to a shift towards minimally invasive procedures, such as retrograde intrarenal surgery, supported by advancements in laser technologies for lithotripsy. Pulsed lasers, particularly the holmium YAG and the newer thulium fiber laser, have significantly transformed the management of upper urinary tract stones. However, the use of high-power lasers in these procedures introduces risks of heat-related injury.

View Article and Find Full Text PDF

Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.

Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.

View Article and Find Full Text PDF

UW supplementation with AP39 improves liver viability following static cold storage.

Sci Rep

January 2025

Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Static cold storage of donor livers at 4 °C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (HS) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. HS is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations.

View Article and Find Full Text PDF

Measurements of polycyclic aromatic hydrocarbons (PAHs) were simultaneously carried out at three different urban locations in Croatia (Zagreb, Slavonski Brod and Vinkovci) characterized as urban residential (UR), urban industrial (UI) and urban background (UB), respectively. This was done in order to determine seasonal and spatial variations, estimate dominant pollution sources for each area and estimate the lifetime carcinogenic health risks from atmospheric PAHs. Mass concentrations of PAHs showed seasonal variation with the highest values during the colder period and the lowest concentration during the warmer period of the year.

View Article and Find Full Text PDF

The modified nanoparticles can significantly improve the insulation characteristics of transformer oil. Currently, there is a lack of research on the actual motion state of particles in nanofluid to further understand the micro-mechanism of nanoparticles improving the insulation characteristics of transformer oil. In this study, the nanofluid containing 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!