This research focuses on modeling heat transfer in heterogeneous media composed of stacked spheres of paraffin as a perspective polymeric phase-change material. The main goal is to study the requirements of the numerical scheme to correctly predict the thermal conductivity in a periodic system composed of an indefinitely repeated configuration of spherical particles subjected to a temperature gradient. Based on OpenFOAM, a simulation platform is created with which the resolution requirements for accurate heat transfer predictions were inferred systematically. The approach is illustrated for unit cells containing either a single sphere or a configuration of two spheres. Asymptotic convergence rates confirming the second-order accuracy of the method are established in case the grid is fine enough to have eight or more grid cells covering the distance of the diameter of a sphere. Configurations with two spheres can be created in which small gaps remain between these spheres. It was found that even the under-resolution of these small gaps does not yield inaccurate numerical solutions for the temperature field in the domain, as long as one adheres to using eight or more grid cells per sphere diameter. Overlapping and (barely) touching spheres in a configuration can be simulated with high fidelity and realistic computing costs. This study further extends to examine the effective thermal conductivity of the unit cell, particularly focusing on the volume fraction of paraffin in cases with unit cells containing a single sphere. Finally, we explore the dependence of the effective thermal conductivity for unit cells containing two spheres at different distances between them.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014355 | PMC |
http://dx.doi.org/10.3390/polym16071015 | DOI Listing |
Small
January 2025
Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
N-type BiTeSe(BTS) is a state-of-the-art thermoelectric material owing to its excellent thermoelectric properties near room temperatures for commercial applications. However, its performance is restricted by its comparatively low figure of merit ZT. Here, it is shown that a 14% increase in power factor (PF) (at 300 K) can be reached through incorporation of inorganic GaAs nanoparticles due to enhanced thermopower originating from the energy-dependent carrier scattering.
View Article and Find Full Text PDFMater Horiz
January 2025
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
As the demand for high-power-density microelectronics rises, overheating becomes the bottleneck that limits device performance. In particular, the heterogeneous integration architecture can magnify the importance of heat dissipation and necessitate electrical insulation between critical junctions to prevent dielectric breakdown. Consequently, there is an urgent need for thermal interface materials (TIMs) with high thermal conductivity and electrical insulation to address this challenge.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High-Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008, China.
A novel class of SiO aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by utilizing SiO aerogel particles not only as a thermal insulative functional additive filler but also as nano-sized solid particles in a Picking emulsion system, adjusting the surface tension as a stabilizer at the interface between the two immiscible phases (liquid and air in this case). The results of foamy structure analyses via scanning electron microscopy, micro-CT, and N adsorption-desorption isotherms validate the successful generation of a micro-scale porous structure with the enhancement of the aerogel nano-scale solid particles at the wall as a stabilizer.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of Nonferrous Metals and Processes, GRIMN Group Co., Ltd., Beijing 100088, China.
Paraffin wax (PW) has significant potential for spacecraft thermal management, but low thermal conductivity and leakage issues make it no longer sufficient for the requirements of evolving spacecraft thermal control systems. Although free-state expanded graphite (EG) as a thermal conductivity enhancer can ameliorate the above problems, it remains challenging to achieve higher thermal conductivity (K) (>8 W/(m·K)) at filler contents below 10 wt.% and to mitigate the leakage problem.
View Article and Find Full Text PDFGels
January 2025
Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of Science, Campus Miguel Delibes, University of Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
In the present work, the influence of the addition of graphene nanoplatelets presenting different dimensions on polyurethane-polyisocyanurate aerogel structure and properties has been studied. The obtained aerogels synthesized through a sol-gel method have been fully characterized in terms of density, porosity, specific surface area, mechanical stiffness, thermal conductivity, and speed of sound. Opacified aerogels showing high porosity (>92%) and low densities (78-98 kg/m) have been produced, and the effect of the size and content of graphene nanoplatelets has been studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!