Currently, metal is the most common exterior material used in robot development due to the need to protect the motor. However, as soft, wearable, and humanoid robots are gradually being developed, many robot parts need to be converted into artificial skin using flexible materials. In this study, in order to develop soft exterior parts for robots, we intended to manufacture exterior robot arm parts via fused filament fabrication (FFF) 3D printing according to various structural and thickness conditions and analyze their mechanical properties. The exterior parts of the robot arms were manufactured utilizing Shore 95 A TPU (eTPU, Esun, Shenzhen, China), which is renowned for its softness and exceptional shock absorption characteristics. The exterior robot arm parts were modeled in two parts, the forearm and upper arm, by applying solid (SL) and re-entrant (RE) structures and thicknesses of 1, 2, and 4 mm. The mechanical properties were analyzed through the use of three-point bending, tensile, and compression testing. All of the characterizations were analyzed using a universal testing machine (AGS-X, SHIMADZU, Kyoto, Japan). After testing the samples, it was confirmed that the RE structure was easily bendable towards the bending curve and required less stress. In terms of the tensile tests, the results were similar to the bending tests; to achieve the maximum point, less stress was required, and for the compression tests, the RE structure was able to withstand the load compared to the SL structure. Therefore, after analyzing all three thicknesses, it was confirmed that the RE structure with a 2 mm thickness had excellent characteristics in terms of bending, tensile, and compressive properties. Therefore, the re-entrant pattern with a 2 mm thickness is more suitable for manufacturing a 3D-printed humanoid robot arm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013340PMC
http://dx.doi.org/10.3390/polym16070988DOI Listing

Publication Analysis

Top Keywords

robot arm
16
exterior parts
12
3d-printed humanoid
8
humanoid robot
8
exterior robot
8
arm parts
8
mechanical properties
8
bending tensile
8
confirmed structure
8
parts
7

Similar Publications

Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).

View Article and Find Full Text PDF

In this paper, a bibliometric review is conducted on brain-computer interfaces (BCI) in non-invasive paradigms like motor imagery (MI) and steady-state visually evoked potentials (SSVEP) for applications in rehabilitation and robotics. An exploratory and descriptive approach is used in the analysis. Computational tools such as the biblioshiny application for R-Bibliometrix and VOSViewer are employed to generate data on years, sources, authors, affiliation, country, documents, co-author, co-citation, and co-occurrence.

View Article and Find Full Text PDF

Human hands have over 20 degrees of freedom, enabled by a complex system of bones, muscles, and joints. Hand differences can significantly impair dexterity and independence in daily activities. Accurate assessment of hand function, particularly digit movement, is vital for effective intervention and rehabilitation.

View Article and Find Full Text PDF

: Robot-assisted radical prostatectomy (RARP) for the treatment of prostate cancer (PCa) has been standardized over the last 20 years. At our institution, only n = 3 rob arms are used for RARP. In addition, n = 2, 12 mm lap trocars are placed for the bedside assistant symmetrically at the midclavicular lines, which allows for direct pelvic triangulation and greater involvement of the assisting surgeon.

View Article and Find Full Text PDF

Elephant-inspired tapered cable-driven hyper-redundant manipulator: design and performance analysis.

Bioinspir Biomim

January 2025

Southwest University of Science and Technology, No. 59, Middle Section of Qinglong Avenue, Fucheng District, Mianyang City, Sichuan Province, Mianyang, Sichuan, 621010, CHINA.

The Cable-Driven Hyper-redundant Manipulator (CDHM), distinguished by its high flexibility and adjustable stiffness, is extensively utilized in confined and obstacle-rich environments such as aerospace and nuclear facilities. This paper introduces a novel CDHM inspired by the trunk of elephants, which changes the arm structure from cylindrical to conical. This alteration diminishes the arm's self-weight, reduces the moment arm of gravity, decreases the volume of the end joint, narrows the stroke of the driving cables, and boosts the maximum joint speed of the manipulator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!