The current work introduces the synthesis of inorganic salt nano/micro-crystals during the reduction of hydrogen tetrachloroaurate(III) by Pluronic triblock copolymers (P123, PEO-PPO-PEO). The morphologies and component were confirmed using an electron microscope with an electronic differential system (EDS), and the crystal structures were determined with X-ray diffraction (XRD). The morphologies highly depend on the concentrations of Pluronic and pH values. The mean size of the nanocrystal and hollow micro-crystal were controlled typically in the range of 32-150 nm (side length) and 1.4 μm, respectively. Different from the electrospray-ionization (EI) method, a model in which KCl forms a supersaturated solution in the micellar core of Pluronic is used to explain the formation process. This work provides the new insight that inorganic salt nanocrystals could be synthesized with the template of micelles in pure aqueous solutions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013680 | PMC |
http://dx.doi.org/10.3390/polym16070982 | DOI Listing |
Research (Wash D C)
December 2024
School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary FF-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Polymer Synthesis Laboratory, Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
Uniform sugar-functionalized polyesters combine the benefits of sugar's structural diversity, biocompatibility, and biodegradability with precise postfunctionalization capabilities, making them a highly valuable class of materials with extensive application potential. However, the irregular placement of hydroxyl groups has limited the synthesis of these polyesters. Here, we present the first platform for uniform sugar-functionalized polyesters via regioselective ring-opening copolymerizations (ROCOPs) of allopyranoside anhydrosugar epoxide (, derived from d-glucose) with cyclic anhydrides, followed by complete selective deprotection.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India. Electronic address:
Poloxamer 407 is a versatile excipient that enhances drug solubilization and prolongs drug release. Poloxamers are non-ionic tri-block copolymers composed of a central hydrophobic chain of polyoxypropylene flanked by two hydrophilic chains of polyoxyethylene. Various researchers have utilized Poloxamer 407 in topical and transdermal drug delivery systems, and it has also been reported to enhance skin permeability.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
CNRS - UMR5128 - University of Lyon, 43 av du 11 nov 1918, Villeurbanne, FRANCE.
Polymers (Basel)
November 2024
Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand.
The more flexible and faster biodegradation rate of poly(L-lactide)--poly(ethylene glycol)--poly(L-lactide) (PLLA-PEG-PLLA) triblock copolymer makes it a promising bioplastic compared to PLLA. However, finding effective additives for this triblock copolymer remains a research challenge for their wider applications. This work involved the melt-blending of a cerium lactate (Ce-LA) antibacterial agent with a triblock copolymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!