Integrated Heat Recovery System Based on Mixed Ionic-Electronic Conducting Membrane for Improved Solid Oxide Co-Electrolyzer Performance.

Polymers (Basel)

Department of Chemical and Environmental Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain.

Published: March 2024

The current state of mixed ionic-electronic conducting ceramic membrane technology presents significant advancements with potential applications in various fields including solid oxide electrolyzers, fuel cells, hydrogen production, CO reduction, and membrane reactors for chemical production and oxygen separation. Particularly in oxygen separation applications, optimal conditions closely align with the conditions of oxygen-rich air streams emitted from the anode of solid oxide co-electrolyzers. This paper describes and analyzes a novel integrated heat recovery system based on mixed ionic-electronic conducting membranes. The system operates in two stages: firstly, oxygen is separated from the anode output stream using mixed ionic-electronic conducting membranes aided by a vacuum system, followed by the heat recovery process. Upon oxygen separation, the swept gas stream is recirculated at temperatures near thermoneutral conditions, resulting in performance improvements at both cell and system levels. Additionally, an oxygen stream is generated for various applications. An Aspen HYSYS model has been developed to calculate heat and material balances, demonstrating the efficiency enhancements of the proposed system configuration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013187PMC
http://dx.doi.org/10.3390/polym16070932DOI Listing

Publication Analysis

Top Keywords

mixed ionic-electronic
16
ionic-electronic conducting
16
heat recovery
12
solid oxide
12
oxygen separation
12
integrated heat
8
recovery system
8
system based
8
based mixed
8
conducting membranes
8

Similar Publications

Organic Mixed Conductors for Neural Biomimicry and Biointerfacing.

Annu Rev Chem Biomol Eng

January 2025

Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden; email:

Organic mixed ionic-electronic conductors (OMIECs) could revolutionize bioelectronics by enabling seamless integration with biological systems. This review explores their role in neural biomimicry and biointerfacing, with a focus on how backbone design, sidechain optimization, and antiambipolarity impact performance. Recent advances highlight OMIECs' biocompatibility and mechanical compliance, making them ideal for bioelectronic applications.

View Article and Find Full Text PDF

Degradable features are highly desirable to advance next-generation organic mixed ionic-electronic conductors (OMIECs) for transient bioinspired artificial intelligence devices.It is highly challenging that OMIECs exhibit excellent mixed ionic-electronic behavior and show degradability simultaneously.Specially,in OMIECs,doping is often a tradeoff between structural disorder and charge carrier mobilities.

View Article and Find Full Text PDF

Silicon-based all-solid-state batteries operating free from external pressure.

Nat Commun

January 2025

Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Jiujiang Research Institute, Xiamen University, Xiamen, China.

Silicon-based all-solid-state batteries offer high energy density and safety but face significant application challenges due to the requirement of high external pressure. In this study, a LiSi/Si-LiSi double-layered anode is developed for all-solid-state batteries operating free from external pressure. Under the cold-pressed sintering of LiSi alloys, the anode forms a top layer (LiSi layer) with mixed ionic/electronic conduction and a bottom layer (Si-LiSi layer) containing a three-dimensional continuous conductive network.

View Article and Find Full Text PDF

Organic mixed ionic-electronic conductors (OMIECs) are crucial in defining the operational modes and performance of organic electrochemical transistors (OECTs). However, studies on the design and structure-performance correlations of small-molecule n-type OMIECs remain scarce. Herein, we designed and synthesized a series of naphthalene diimide (NDI)-based n-type small molecules by extending π-conjugation and increasing the number of electron-withdrawing groups, achieving performance optimization and even changes in operational modes through structural regulations.

View Article and Find Full Text PDF

Polymeric mixed ionic-electronic conductors (PMIECs) are gaining significant attention due to their potential applications in organic electrochemical transistors (OECTs). However, the performance of n-type OECTs still lags behind that of their p-type counterparts. Here, the structure-performance correlation of fused bithiophene imide dimer (BTI2)-based PMIECs is systematically investigated with the backbone evaluation from acceptor-strong donor (A-SD) to acceptor-donor (A-D), to acceptor-weak donor (A-WD), to acceptor-weak acceptor (A-WA), and finally to A-A structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!