A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A System for Mixed-Reality Holographic Overlays of Real-Time Rendered 3D-Reconstructed Imaging Using a Video Pass-through Head-Mounted Display-A Pathway to Future Navigation in Chest Wall Surgery. | LitMetric

Three-dimensional reconstructions of state-of-the-art high-resolution imaging are progressively being used more for preprocedural assessment in thoracic surgery. It is a promising tool that aims to improve patient-specific treatment planning, for example, for minimally invasive or robotic-assisted lung resections. Increasingly available mixed-reality hardware based on video pass-through technology enables the projection of image data as a hologram onto the patient. We describe the novel method of real-time 3D surgical planning in a mixed-reality setting by presenting three representative cases utilizing volume rendering. : A mixed-reality system was set up using a high-performance workstation running a video pass-through-based head-mounted display. Image data from computer tomography were imported and volume-rendered in real-time to be customized through live editing. The image-based hologram was projected onto the patient, highlighting the regions of interest. : Three oncological cases were selected to explore the potentials of the mixed-reality system. Two of them presented large tumor masses in the thoracic cavity, while a third case presented an unclear lesion of the chest wall. We aligned real-time rendered 3D holographic image data onto the patient allowing us to investigate the relationship between anatomical structures and their respective body position. : The exploration of holographic overlay has proven to be promising in improving preprocedural surgical planning, particularly for complex oncological tasks in the thoracic surgical field. Further studies on outcome-related surgical planning and navigation should therefore be conducted. Ongoing technological progress of extended reality hardware and intelligent software features will most likely enhance applicability and the range of use in surgical fields within the near future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11012529PMC
http://dx.doi.org/10.3390/jcm13072080DOI Listing

Publication Analysis

Top Keywords

image data
12
surgical planning
12
real-time rendered
8
video pass-through
8
chest wall
8
mixed-reality system
8
surgical
5
system mixed-reality
4
mixed-reality holographic
4
holographic overlays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!