The purpose of this paper is to assess the determination of male and female sex from trabecular bone structures in the pelvic region. The study involved analyzing digital radiographs for 343 patients and identifying fourteen areas of interest based on their medical significance, with seven regions on each side of the body for symmetry. Textural parameters for each region were obtained using various methods, and a thorough investigation of data normalization was conducted. Feature selection approaches were then evaluated to determine a small set of the most representative features, which were input into several classification machine learning models. The findings revealed a sex-dependent correlation in the bone structure observed in X-ray images, with the degree of dependency varying based on the anatomical location. Notably, the femoral neck and ischium regions exhibited distinctive characteristics between sexes. This insight is crucial for medical professionals seeking to estimate sex dependencies from such image data. For these four specific areas, the balanced accuracy exceeded 70%. The results demonstrated symmetry, confirming the genuine dependencies in the trabecular bone structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11012966 | PMC |
http://dx.doi.org/10.3390/jcm13071904 | DOI Listing |
Nutrients
January 2025
Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
Background: It seems that some substances of plant origin may exert health-promoting activities in diabetes and its complications, including those concerning bones. Chrysin (5,7-dihydroxyflavone), present in honey, some plants, and food of plant origin, has been reported to exert, among others, antioxidative, anti-inflammatory and antidiabetic effects. The aim of this study was to investigate the effects of chrysin on the skeletal system of rats with experimental type 1 diabetes (T1D).
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Neurosurgery, Montefiore Medical Center, Bronx, NY 10461, USA.
Bone mineral density (BMD) is an essential indicator of bone strength and plays a crucial role in the clinical management of various spinal pathologies. Hounsfield units (HUs) calculated from computed tomography (CT) scans are a well-established, effective, and non-invasive method to determine bone density in the lumbar spine when juxtaposed to dual-energy X-ray absorptiometry (DEXA) scans, the gold standard for assessing trabecular bone density. Only recently have studies begun to investigate and establish HUs as a reliable and valid alternative for bone quality assessment in the cervical spine as well.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Plastic, Aesthetic and Reconstructive Surgery, Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria.
Vascularized bone grafts have been successfully established for complex bone defects. The integration of three-dimensional (3D) simulation and printing technology may aid in more precise surgical planning and intraoperative bone shaping. The purpose of the present study was to describe the implementation and surgical application of this innovative technology for bone reconstruction.
View Article and Find Full Text PDFJ Clin Med
January 2025
Surgical Oncology Department, Emergency County Hospital Oradea, Strada Gheorghe Doja 65, 410169 Oradea, Romania.
: Sleeve gastrectomy (SG) is increasingly used to treat severe obesity in adolescents, but its effects on bone health during this critical period of bone accrual are not fully understood. This systematic review aims to evaluate the impact of SG on the bone mineral density (BMD), bone microarchitecture, marrow adipose tissue (MAT), and bone turnover markers in adolescents. : A comprehensive literature search was conducted to identify studies assessing bone health outcomes in adolescents undergoing SG.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland.
This paper presents an experimental method for estimating the fatigue limit of trabecular bone using a single trabecular bone sample, the microstructural parameters of which were determined by microCT. Fatigue tests were carried out using the Locati method, with stepwise increasing load amplitude. The fatigue limits of the trabecular structures were determined experimentally in accordance with Miner's law of fatigue damage accumulation, based on the parameters of the reference S-N curve taken from the literature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!