Cloud-based Radio Access Network (Cloud-RAN) leverages virtualization to enable the coexistence of multiple virtual Base Band Units (vBBUs) with collocated workloads on a single edge computer, aiming for economic and operational efficiency. However, this coexistence can cause performance degradation in vBBUs due to resource contention. In this paper, we conduct an empirical analysis of vBBU performance on a Linux RT-Kernel, highlighting the impact of resource sharing with user-space tasks and Kernel threads. Furthermore, we evaluate CPU management strategies such as CPU affinity and CPU isolation as potential solutions to these performance challenges. Our results highlight that the implementation of CPU affinity can significantly reduce throughput variability by up to 40%, decrease vBBU's NACK ratios, and reduce vBBU scheduling latency within the Linux RT-Kernel. Collectively, these findings underscore the potential of CPU management strategies to enhance vBBU performance in Cloud-RAN environments, enabling more efficient and stable network operations. The paper concludes with a discussion on the efficient realization of Cloud-RAN, elucidating the benefits of implementing proposed CPU affinity allocations. The demonstrated enhancements, including reduced scheduling latency and improved end-to-end throughput, affirm the practicality and efficacy of the proposed strategies for optimizing Cloud-RAN deployments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014084 | PMC |
http://dx.doi.org/10.3390/s24072365 | DOI Listing |
J Ethnopharmacol
January 2025
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China. Electronic address:
Ethnopharmacological Relevance: Cholestatic liver injury (CLI) is a pathophysiological syndrome characterized by the accumulation of bile acids (BAs), which leads to significant hepatic dysfunction. This condition is frequently associated with disturbances in BAs homeostasis and the induction of oxidative stress. Ribes diacanthum Pall (RDP), a conventional folk medicinal plant, has been employed in Mongolia, the Inner Mongolia region of China, and other areas for the remediation of hepatic disorders.
View Article and Find Full Text PDFEur J Med Chem
January 2025
State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:
Vitamin D receptor (VDR) has emerged as a crucial target for the treatment of hepatic fibrosis, a condition characterized by excessive deposition of extracellular matrix (ECM) components leading to impaired liver function. Activation of VDR has been shown to inhibit the transformation of hepatic stellate cells (HSCs), which play a key role in the development of liver fibrosis, thus reducing ECM production. In this study, a series of 37 non-steroidal VDR agonists with novel scaffold were designed and synthesized utilizing the scaffold hopping strategy.
View Article and Find Full Text PDFChin Med
January 2025
State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.
Background: Cell membrane chromatography (CMC) is a biochromatography with a dual function of recognition and separation, offering a distinct advantage in screening bioactive compounds from Chinese medicines (CMs). Yindan Xinnaotong soft capsule (YD), a CM formulation, has been widely utilized in the treatment of cardiovascular disease. However, a comprehensive mapping of the myocardial protective active compounds remains elusive.
View Article and Find Full Text PDFMol Divers
December 2024
Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
Protein-ligand interactions are the molecular basis of many important cellular activities, such as gene regulation, cell metabolism, and signal transduction. Protein-ligand binding affinity is a crucial metric of the strength of the interaction between the two, and accurate prediction of its binding affinity is essential for discovering drugs' new uses. So far, although many predictive models based on machine learning and deep learning have been reported, most of the models mainly focus on one-dimensional sequence and two-dimensional structural characteristics of proteins and ligands, but fail to deeply explore the detailed interaction information between proteins and ligand atoms in the binding pocket region of three-dimensional space.
View Article and Find Full Text PDFEur J Med Chem
February 2025
MOE Joint International Research Laboratory of Animal Health and Food Safety, Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, 572025, China. Electronic address:
Increasing antimicrobial resistance underscores the urgent need for new antibiotics with unique mechanisms. Type I signal peptidase (SPase I) is crucial for bacterial survival and a promising target for antibiotics. Herein we designed and synthesized innovative tetrahydroacridine-9-carboxylic acid derivatives by optimizing the initial hit compound SP11 based on virtual screening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!