In mobile robotics, LASER scanners have a wide spectrum of indoor and outdoor applications, both in structured and unstructured environments, due to their accuracy and precision. Most works that use this sensor have their own data representation and their own case-specific modeling strategies, and no common formalism is adopted. To address this issue, this manuscript presents an analytical approach for the identification and localization of objects using 2D LiDARs. Our main contribution lies in formally defining LASER sensor measurements and their representation, the identification of objects, their main properties, and their location in a scene. We validate our proposal with experiments in generic semi-structured environments common in autonomous navigation, and we demonstrate its feasibility in multiple object detection and identification, strictly following its analytical representation. Finally, our proposal further encourages and facilitates the design, modeling, and implementation of other applications that use LASER scanners as a distance sensor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013966 | PMC |
http://dx.doi.org/10.3390/s24072284 | DOI Listing |
Elife
December 2024
Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University of Salzburg, Salzburg, Austria.
Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science, Khalifa University, Abu Dhabi, UAE.
A methodology is proposed, which addresses the caveat that line-of-sight emission spectroscopy presents in that it cannot provide spatially resolved temperature measurements in non-homogeneous temperature fields. The aim of this research is to explore the use of data-driven models in measuring temperature distributions in a spatially resolved manner using emission spectroscopy data. Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN).
View Article and Find Full Text PDFAnesth Analg
January 2025
From the Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado.
This systematic review describes the available clinical practice guidelines (CPGs) for the anesthetic management of trauma and appraises the accessibility and quality of these resources. This review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A search was conducted across 8 databases (MEDLINE, Embase, Web of Science, CABI Digital Library, Global Index Medicus, SciELO, Google Scholar, and National Institute for Health and Care Excellence) for guidelines from 2010 to 2023.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Economics, Columbia University, New York, NY 10027.
Measuring and interpreting errors in behavioral tasks is critical for understanding cognition. Conventional wisdom assumes that encoding/decoding errors for continuous variables in behavioral tasks should naturally have Gaussian distributions, so that deviations from normality in the empirical data indicate the presence of more complex sources of noise. This line of reasoning has been central for prior research on working memory.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Computational Science Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
Efficiently extracting data from tables in the scientific literature is pivotal for building large-scale databases. However, the tables reported in materials science papers exist in highly diverse forms; thus, rule-based extractions are an ineffective approach. To overcome this challenge, the study presents MaTableGPT, which is a GPT-based table data extractor from the materials science literature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!