Under a foggy environment, the air contains a large number of suspended particles, which lead to the loss of image information and decline of contrast collected by the vision system. This makes subsequent processing and analysis difficult. At the same time, the current stage of the defogging system has problems such as high hardware cost and poor real-time processing. In this article, an image defogging system is designed based on the ZYNQ platform. First of all, on the basis of the traditional dark-channel defogging algorithm, an algorithm for segmenting the sky is proposed, and in this way, the image distortion caused by the sky region is avoided, and the atmospheric light value and transmittance are estimated more accurately. Then color balancing is performed after image defogging to improve the quality of the final output image. The parallel computing advantage and logic resources of the PL (Programmable Logic) part (FPGA) of ZYNQ are fully utilized through instruction constraints and logic optimization. Finally, the visible light detector is used as the input to build a real-time video processing experiment platform. The experimental results show that the system has a good defogging effect and meet the real-time requirements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014280 | PMC |
http://dx.doi.org/10.3390/s24072276 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!