In recent years, smartphones have emerged as the primary terminal for navigation and location services among mass users, owing to their universality, portability, and affordability. However, the highly integrated antenna design within smartphones inevitably introduces interference from internal signal sources, leading to a misalignment between the antenna phase center (APC) and the antenna geometric center. Accurately determining a smartphone's APC can mitigate system errors and enhance positioning accuracy, thereby meeting the increasing demand for precise and reliable user positioning. This paper delves into a detailed analysis of the generation of Global Navigation Satellite System (GNSS) receiver antenna phase center errors and proposes a method for correcting the receiver antenna phase center. Subsequently, a smartphone positioning experiment was conducted by placing the smartphone on an observation column with known coordinates. The collected observations were processed in static relative positioning mode, referencing observations from geodetic-grade equipment, and the accuracy of the static relative positioning fixed solution was evaluated. Following weighted estimation, we determined the antenna phase center of the Xiaomi Mi8 and corrected the APC. A comparison of the positioning results of the Xiaomi Mi8 before and after APC correction revealed minimal impact on the standard deviations (STDs) but significant influence on the root mean square errors (RMSEs). Specifically, the RMSEs in the E/N/U direction were reduced by 59.6%, 58.5%, and 42.0%, respectively, after APC correction compared to before correction. Furthermore, the integer ambiguity fixing rate slightly improved after the APC correction. In conclusion, the determination of a smartphone's APC can effectively reduce system errors in the plane direction of GNSS positioning, thereby enhancing smartphone positioning accuracy. This research holds significant value for advancing high-precision positioning studies related to smartphones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014367PMC
http://dx.doi.org/10.3390/s24072243DOI Listing

Publication Analysis

Top Keywords

antenna phase
20
phase center
20
apc correction
12
positioning
10
high-precision positioning
8
smartphone's apc
8
system errors
8
positioning accuracy
8
receiver antenna
8
smartphone positioning
8

Similar Publications

Broadband terahertz holography using isotropic VO metasurfaces.

Sci Rep

January 2025

School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.

Vanadium dioxide (VO) exhibits exceptional phase transition characteristics that enable dynamic manipulation of electromagnetic wave. In this study, a novel design of bilayer isotropic metasurface is introduced. It leverages insulating-to-metallic phase transition of VO to enable broadband holography for terahertz wave.

View Article and Find Full Text PDF

Toxicity of microplastics and nano-plastics to coral-symbiotic alga (Dinophyceae Symbiodinium): Evidence from alga physiology, ultrastructure, OJIP kinetics and multi-omics.

Water Res

December 2024

School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang, 524088, China; Analytical and Testing Center for Ocean in Western of Guangdong Province, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang, 524088, China. Electronic address:

Corals are representative of typical symbiotic organisms. The coral-algal (Symbiodinium spp.) symbiosis drives the productivity of entire coral reefs.

View Article and Find Full Text PDF

Nowadays, metasurfaces have attracted considerable attention due to their promising and advanced control of electromagnetic (EM) waves. However, it is still challenging to shape guided waves into desired free-space mode, while simultaneously manipulating spatial incident waves using a single metasurface. Herein, a class of metasurfaces capable of multiplexing guided and space waves is proposed to achieve advanced EM functionalities in microwave regions, which can find great application potentials in radar systems, wireless communications, and wireless power transfer (WPT).

View Article and Find Full Text PDF

Photoacclimation strategies of Chlamydomonas reinhardtii in response to high-light stress in stationary phase.

J Photochem Photobiol B

January 2025

Department of Biology, University of New Brunswick, Fredericton E3B5A3, NB, Canada. Electronic address:

Under ideal conditions, Chlamydomonas reinhardtii can photoacclimate to excess light through various short- and long-term mechanisms. However, how microalgae handle excess light stress once they exit exponential growth, and especially in stationary phase, is less understood. Our study explored C.

View Article and Find Full Text PDF

Phase-Change-Material-Based True Time-Delay System.

Sensors (Basel)

November 2024

Photonics Research Group, Department of Electrical and Information Engineering, Politecnico di Bari, 70126 Bari, Italy.

This study explores the achievement of a tunable true time-delay (TTD) system for a microwave phased-array antenna (MPAA) by incorporating the reversible phase-transition property of phase-change material (PCM) with Bragg gratings (BGs) and a cascade of three phase-shifted Bragg grating resonators (CPSBGRs). The goal was to design a low-power-consuming, non-volatile highly tunable compact TTD system for beam steering. A programmable on/off reflector was designed by changing a PCM-incorporated BG/CPSBGR from one phase to another.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!