Classical machine learning techniques have dominated Music Emotion Recognition. However, improvements have slowed down due to the complex and time-consuming task of handcrafting new emotionally relevant audio features. Deep learning methods have recently gained popularity in the field because of their ability to automatically learn relevant features from spectral representations of songs, eliminating such necessity. Nonetheless, there are limitations, such as the need for large amounts of quality labeled data, a common problem in MER research. To understand the effectiveness of these techniques, a comparison study using various classical machine learning and deep learning methods was conducted. The results showed that using an ensemble of a Dense Neural Network and a Convolutional Neural Network architecture resulted in a state-of-the-art 80.20% F1 score, an improvement of around 5% considering the best baseline results, concluding that future research should take advantage of both paradigms, that is, combining handcrafted features with feature learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014202PMC
http://dx.doi.org/10.3390/s24072201DOI Listing

Publication Analysis

Top Keywords

deep learning
12
comparison study
8
music emotion
8
emotion recognition
8
classical machine
8
machine learning
8
learning methods
8
neural network
8
learning
6
study deep
4

Similar Publications

Sleep stages classification one of the essential factors concerning sleep disorder diagnoses, which can contribute to many functional disease treatments or prevent the primary cognitive risks in daily activities. In this study, A novel method of mapping EEG signals to music is proposed to classify sleep stages. A total of 4.

View Article and Find Full Text PDF

AxonFinder: Automated segmentation of tumor innervating neuronal fibers.

Heliyon

January 2025

Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.

Neurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach.

View Article and Find Full Text PDF

An empirical study of LLaMA3 quantization: from LLMs to MLLMs.

Vis Intell

December 2024

Department of Information Technology and Electrical Engineering, ETH Zurich, Sternwartstrasse 7, Zürich, Switzerland.

The LLaMA family, a collection of foundation language models ranging from 7B to 65B parameters, has become one of the most powerful open-source large language models (LLMs) and the popular LLM backbone of multi-modal large language models (MLLMs), widely used in computer vision and natural language understanding tasks. In particular, LLaMA3 models have recently been released and have achieved impressive performance in various domains with super-large scale pre-training on over 15T tokens of data. Given the wide application of low-bit quantization for LLMs in resource-constrained scenarios, we explore LLaMA3's capabilities when quantized to low bit-width.

View Article and Find Full Text PDF

Advances in modeling cellular state dynamics: integrating omics data and predictive techniques.

Anim Cells Syst (Seoul)

January 2025

Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea.

Dynamic modeling of cellular states has emerged as a pivotal approach for understanding complex biological processes such as cell differentiation, disease progression, and tissue development. This review provides a comprehensive overview of current approaches for modeling cellular state dynamics, focusing on techniques ranging from dynamic or static biomolecular network models to deep learning models. We highlight how these approaches integrated with various omics data such as transcriptomics, and single-cell RNA sequencing could be used to capture and predict cellular behavior and transitions.

View Article and Find Full Text PDF

In weightlifting, quantitative kinematic analysis is essential for evaluating snatch performance. While marker-based (MB) approaches are commonly used, they are impractical for training or competitions. Markerless video-based (VB) systems utilizing deep learning-based pose estimation algorithms could address this issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!