In this case study on volume determination in waste sorting facilities, we evaluate the effectiveness of ultrasonic sensors and address waste-material-specific challenges. Although ultrasonic sensors offer a cost-effective automation solution, their accuracy is affected by irregular waste shapes, varied compositions, and environmental factors. Notable inconsistencies in volume measurements between storage bunkers and conveyor belts underscore the need for a comprehensive approach to standardize bale production. With prediction reliability being constrained by limited datasets, undocumented modifications to machine settings, and sensor failures, this task renders a challenging application area for machine learning. We explore related research and present dataset analyses from three distinct waste sorting facilities in Europe, addressing issues such as sensor usability, data quality, and material specifics. Our analysis suggests promising strategies and future directions for enhancing waste volume measurement accuracy, ultimately aiming to advance sustainable waste management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014339 | PMC |
http://dx.doi.org/10.3390/s24072114 | DOI Listing |
Waste Manag
January 2025
Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Leoben, Austria. Electronic address:
Global waste generation is projected to reach 3.40 billion tons by 2050, necessitating improved waste sorting for effective recycling and progress toward a circular economy. Achieving this transformation requires higher sorting intensity through intensified processes, increased efficiency, and enhanced yield.
View Article and Find Full Text PDFToxicol Rep
June 2025
Department of Sociology, Hohai University, Nanjing 211100, China.
Achieving upcycling and circularity in the microplastic economy predominantly depends on collecting and sorting plastic waste from the source to the end-user for resource conservation. Microplastics, whether from packaging or non-packaging materials, pose a significant environmental challenge as they are often not prioritized for collection or recycling initiatives. The presence of additives impedes the quality of plastic recyclates and the persistence of microplastics as shredded resultants remain a threat to the aquatic and terrestrial ecosystem and its biodiversity.
View Article and Find Full Text PDFFood Res Int
February 2025
State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
The prepared foods sector has grown rapidly in recent years, driven by the fast pace of modern living and increasing consumer demand for convenience. Prepared foods are taking an increasingly important role in the modern catering industry due to their ease of storage, transportation, and operation. However, their processing faces several challenges, including labor shortages, inefficient sorting, inadequate cleaning, unsafe cutting processes, and a lack of industry standards.
View Article and Find Full Text PDFWaste Manag
January 2025
Department of Industrial and Materials Science, Division of Product Development, Chalmers University of Technology SE-412 96 Gothenburg, Sweden. Electronic address:
Waste-to-Energy (WtE) generates circa 1 Mt/y of Mineral fraction of Incineration Bottom Ash (MIBA) in Sweden, often used as construction material for landfills. Upcoming European Commission directives will limit landfilling and the demand for MIBA for landfill construction is predicted to decrease. Therefore, alternative utilisations of MIBA are required.
View Article and Find Full Text PDFE-waste contains hazardous chemicals that may be a direct health risk for workers involved in recycling. We conducted an untargeted metabolomics analysis of urine samples collected from male e-waste processing workers to explore metabolic changes associated with chemical exposures in e-waste recycling in Belgium, Finland, Latvia, Luxembourg, the Netherlands, Poland, and Portugal. Questionnaire data and urine samples were obtained from workers involved in the processing of e-waste (sorting, dismantling, shredding, pre-processing, metal, and non-metal processing), as well as from controls with no known occupational exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!