A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Study on Dimensionality Reduction and Parameters for Hyperspectral Imagery Based on Manifold Learning. | LitMetric

With the rapid advancement of remote-sensing technology, the spectral information obtained from hyperspectral remote-sensing imagery has become increasingly rich, facilitating detailed spectral analysis of Earth's surface objects. However, the abundance of spectral information presents certain challenges for data processing, such as the "curse of dimensionality" leading to the "Hughes phenomenon", "strong correlation" due to high resolution, and "nonlinear characteristics" caused by varying surface reflectances. Consequently, dimensionality reduction of hyperspectral data emerges as a critical task. This paper begins by elucidating the principles and processes of hyperspectral image dimensionality reduction based on manifold theory and learning methods, in light of the nonlinear structures and features present in hyperspectral remote-sensing data, and formulates a dimensionality reduction process based on manifold learning. Subsequently, this study explores the capabilities of feature extraction and low-dimensional embedding for hyperspectral imagery using manifold learning approaches, including principal components analysis (PCA), multidimensional scaling (MDS), and linear discriminant analysis (LDA) for linear methods; and isometric mapping (Isomap), locally linear embedding (LLE), Laplacian eigenmaps (LE), Hessian locally linear embedding (HLLE), local tangent space alignment (LTSA), and maximum variance unfolding (MVU) for nonlinear methods, based on the Indian Pines hyperspectral dataset and Pavia University dataset. Furthermore, the paper investigates the optimal neighborhood computation time and overall algorithm runtime for feature extraction in hyperspectral imagery, varying by the choice of neighborhood k and intrinsic dimensionality d values across different manifold learning methods. Based on the outcomes of feature extraction, the study examines the classification experiments of various manifold learning methods, comparing and analyzing the variations in classification accuracy and Kappa coefficient with different selections of neighborhood k and intrinsic dimensionality d values. Building on this, the impact of selecting different bandwidths t for the Gaussian kernel in the LE method and different Lagrange multipliers λ for the MVU method on classification accuracy, given varying choices of neighborhood k and intrinsic dimensionality d, is explored. Through these experiments, the paper investigates the capability and effectiveness of different manifold learning methods in feature extraction and dimensionality reduction within hyperspectral imagery, as influenced by the selection of neighborhood k and intrinsic dimensionality d values, identifying the optimal neighborhood k and intrinsic dimensionality d value for each method. A comparison of classification accuracies reveals that the LTSA method yields superior classification results compared to other manifold learning approaches. The study demonstrates the advantages of manifold learning methods in processing hyperspectral image data, providing an experimental reference for subsequent research on hyperspectral image dimensionality reduction using manifold learning methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014055PMC
http://dx.doi.org/10.3390/s24072089DOI Listing

Publication Analysis

Top Keywords

manifold learning
36
dimensionality reduction
24
learning methods
24
neighborhood intrinsic
20
intrinsic dimensionality
20
hyperspectral imagery
16
feature extraction
16
based manifold
12
hyperspectral image
12
dimensionality values
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!