Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reasonable design of low-cost, high-efficiency and stable bifunctional oxygen electrocatalysts is of great significance to improve the reaction efficiency of Zn-air batteries, which is still a huge challenge. Here, we report a highly efficient bifunctional oxygen electrocatalyst with three-dimensional (3D) N-doped graphene network-supported cobalt and cobalt oxide nanoparticles (Co/CoO-NG), which can be in situ synthesized by inducing metal ions on metal plates via graphene oxide as an inducer. This 3D network structure and open active center show excellent bifunctional oxygen electrocatalytic activity under alkaline conditions, and can be used as an air electrode in rechargeable Zn-air batteries, with significantly better power density (244.28 mW cm) and stability (over 340 h) than commercial Pt/C+RuO mixtures. This work is conducive to advancing the practical application of graphene-based materials as air electrodes for rechargeable zinc-air batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202400570 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!