A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unveiling the Biocontrol Potential of Rhizoplane Bacillus Species against Sugarcane Fusarium Wilt through Biochemical and Molecular Analysis. | LitMetric

Background: Biocontrol is regarded as a viable alternate technique for managing sugarcane wilt disease caused by Fusarium sacchari. Many fungal antagonists against F. sacchari, have been reported, but the potential of bacterial antagonists was explored to a limited extent, so the present study evaluated the antagonistic potential of rhizoplane Bacillus species and their mode of action.

Results: A total of twenty Bacillus isolates from the rhizoplane of commercially grown sugarcane varieties were isolated. The potential isolate SRB2 had shown inhibition of 52.30, 33.33, & 44.44% and SRB20 of 35.00, 33.15, & 36.85% in direct, indirect, and remote confrontation respectively against F. sacchari. The effective strains were identified as Bacillus inaquosorum strain SRB2 and B. vallismortis strain SRB20, by PCR amplification of 16S-23S intergenic region. The biochemical studies on various direct and indirect biocontrol mechanisms revealed the production of IAA, Protease, Cellulase, Siderophores, and P solubilization. The molecular analysis revealed the presence of antimicrobial peptides biosynthetic genes like fenD (Fengycin), bmyB (Bacyllomicin) ituC (Iturin) and spaS (Subtilin) which provided a competitive edge to these isolates compared to other Bacillus strains. Under greenhouse experiments, the sett bacterization with SRB2, significantly (P < 0.001) reduced the seedling mortality by > 70% followed by SRB20 in F. sacchari inoculated pots.

Conclusion: The study revealed that the isolates B. inaquosorum SRB2 and B. vallismortis SRB20 can be used as potential bioagents against sugarcane Fusarium wilt.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153384PMC
http://dx.doi.org/10.1007/s42770-024-01307-zDOI Listing

Publication Analysis

Top Keywords

potential rhizoplane
8
rhizoplane bacillus
8
bacillus species
8
sugarcane fusarium
8
fusarium wilt
8
molecular analysis
8
direct indirect
8
srb2 vallismortis
8
potential
5
bacillus
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!