Functional antibacterial textile materials are in great demand in the medical sector. In this paper, we propose a facile, eco-friendly approach to the design of antibacterial biodegradable cotton fabrics. Cotton fiber fabrics were enhanced with a chitosan coating loaded with plant extracts and essential oils. We employed Fourier-transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometry, optical microscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) to characterize the color, structure, and thermal properties of the modified fabrics. The fabrics were found to effectively induce growth inhibition of Gram-positive and Gram-negative bacteria, especially when a synergic system of aloe vera extract and cinnamon essential oil was applied in the coating formulation. Additionally, we observed significant color and weight changes after 5, 10, and 20 days in soil biodegradability tests. Given the straightforward modification process and the use of non-toxic natural materials, these innovative bio-based and biodegradable cotton fabrics show great promise as protective antimicrobial textiles for healthcare applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014983PMC
http://dx.doi.org/10.1038/s41598-024-59105-4DOI Listing

Publication Analysis

Top Keywords

biodegradable cotton
12
cotton fabrics
12
plant extracts
8
extracts essential
8
essential oils
8
chitosan coating
8
fabrics
6
bioactive biodegradable
4
cotton
4
fabrics produced
4

Similar Publications

Background: Magnesium (Mg) is essential for plant growth and development and plays critical roles in physiological and biochemical processes. Mg deficiency adversely affects growth of plants by limiting shoot and root development, disturbing the structure and membranes of the grana, reducing photosynthesis efficiency, and lowering net CO assimilation. The MGT (Magnesium transporter) family is responsible for the absorption and transportation of magnesium in plants.

View Article and Find Full Text PDF

In the coevolution of cotton and pathogenic fungi, resistant cotton varieties lead to an escalation in the virulence of Verticillium dahliae.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:

Verticillium dahliae is highly prone to pathogenic differentiation and influenced by host cotton's resistance. To better understand the mechanisms of this phenomenon, we applied the host selective pressures of resistant and susceptible cotton varieties on V. dahliae strain Vd076 within an artificial cotton Verticillium wilt nursery and greenhouse.

View Article and Find Full Text PDF

Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety.

View Article and Find Full Text PDF

Background: Age is the principal risk factor for neurodegeneration in both the retina and brain. The retina and brain share many biological properties; thus, insights into retinal aging and degeneration may shed light onto similar processes in the brain. Genetic makeup strongly influences susceptibility to age-related retinal disease.

View Article and Find Full Text PDF

Spatiotemporal transcriptome and metabolome landscapes of cotton somatic embryos.

Nat Commun

January 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China.

Somatic embryogenesis (SE) is a developmental process related to the regeneration of tissue-cultured plants, which serves as a useful technique for crop breeding and improvement. However, SE in cotton is difficult and elusive due to the lack of precise cellular level information on the reprogramming of gene expression patterns involved in somatic embryogenesis. Here, we investigate the spatial and single-cell expression profiles of key genes and the metabolic patterns of key metabolites by integrated single-cell RNA-sequencing (scRNA-seq), spatial transcriptomics (ST), and spatial metabolomics (SM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!