A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantum biochemical analysis of the TtgR regulator and effectors. | LitMetric

Quantum biochemical analysis of the TtgR regulator and effectors.

Sci Rep

Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59072-970, Brazil.

Published: April 2024

The recent expansion of multidrug-resistant (MDR) pathogens poses significant challenges in treating healthcare-associated infections. Although antibacterial resistance occurs by numerous mechanisms, active efflux of the drugs is a critical concern. A single species of efflux pump can produce a simultaneous resistance to several drugs. One of the best-studied efflux pumps is the TtgABC: a tripartite resistance-nodulation-division (RND) efflux pump implicated in the intrinsic antibiotic resistance in Pseudomonas putida DOT-T1E. The expression of the TtgABC gene is down-regulated by the HTH-type transcriptional repressor TtgR. In this context, by employing quantum chemistry methods based on the Density Functional Theory (DFT) within the Molecular Fragmentation with Conjugate Caps (MFCC) approach, we investigate the coupling profiles of the transcriptional regulator TtgR in complex with quercetin (QUE), a natural polyphenolic flavonoid, tetracycline (TAC), and chloramphenicol (CLM), two broad-spectrum antimicrobial agents. Our quantum biochemical computational results show the: [i] convergence radius, [ii] total binding energy, [iii] relevance (energetically) of the ligands regions, and [iv] most relevant amino acids residues of the TtgR-QUE/TAC/CLM complexes, pointing out distinctions and similarities among them. These findings improve the understanding of the binding mechanism of effectors and facilitate the development of new chemicals targeting TtgR, helping in the battle against the rise of resistance to antimicrobial drugs. These advances are crucial in the ongoing fight against rising antimicrobial drug resistance, providing hope for a future where healthcare-associated infections can be more beneficially treated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11015042PMC
http://dx.doi.org/10.1038/s41598-024-58441-9DOI Listing

Publication Analysis

Top Keywords

quantum biochemical
8
healthcare-associated infections
8
efflux pump
8
resistance
5
biochemical analysis
4
ttgr
4
analysis ttgr
4
ttgr regulator
4
regulator effectors
4
effectors expansion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!