Design and analysis of self-priming extension DNA hairpin probe for miRNA detection based on a unified dynamic programming framework.

Anal Chim Acta

Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China; Zhejiang University Sir Run Run Shaw Alaer Hospital, Alaer, Xinjiang, 843300, China. Electronic address:

Published: May 2024

MicroRNAs (miRNAs) are potential biomarkers for cancer diagnosis and prognosis, methods for detecting miRNAs with high sensitivity, selectivity, and stability are urgently needed. Various nucleic acid probes that have traditionally been for this purpose suffer several drawbacks, including inefficient signal-to-noise ratios and intensities, high cost, and time-consuming method establishment. Computing tools used for investigating the thermodynamics of DNA hybridization reactions can accurately predict the secondary structure of DNA and the interactions between DNA molecules. Herein, NUPACK was used to design a series of nucleic acid probes and develop a phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP) signal amplification strategy, which enabled the ultrasensitive detection of miR-200a in serum samples. The free and binding energies of the DNA detection probes calculated using NUPACK, as well as the biological experimental results, were considered synthetically to select the best sequence and experimental conditions. A unified dynamic programming framework, NUPACK analysis and the experimental data, were complementary and improved the designed model in all respects. Our study demonstrates the feasibility of using computer technology such as NUPACK to simplify the experimental process and provide intuitive results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342530DOI Listing

Publication Analysis

Top Keywords

self-priming extension
8
unified dynamic
8
dynamic programming
8
programming framework
8
nucleic acid
8
acid probes
8
dna
5
design analysis
4
analysis self-priming
4
extension dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!