Background: Novel psychoactive substances (NPS) are a group of substances, mainly of synthetic origin, characterized by toxicological properties extremely dangerous. The main difficulty in recognizing NPS in seizures and biological samples lies in their dynamic nature, related to the continuous synthesis and introduction on the market of new drugs, often with very similar structures to existing ones. The aim of this study was the creation of a robust and versatile method for the analysis of traditional drugs and NPS in different matrices.
Results: Both target analysis and suspect screening methodologies were developed. The strategy used for suspect screening allowed to collect data through a scheduled multi reaction monitoring (sMRM) survey which triggered the collection of enhanced product ion (EPI) spectra when a compound met information dependent acquisition (IDA) criteria. The retention time of the different drugs, which was crucial to define the sMRM survey scan parameters, was predicted with a Quantitative Structure Retention (Chromatographic) Relationship (QSRR) model by Multiple Linear Regression. The model was validated through the evaluation of training set predictions, an external validation set and a leave-one out strategy; the results showed that the method fit for its purpose. The target method was validated in oral fluid as a testing matrix, with excellent results in term of recovery, accuracy, precision and matrix effect. Finally, the performances of the suspect method were evaluated by analysing a mixture containing 8 reference standards not included in the initial dataset, as well as seizures and real oral fluid samples. Four NPS were putatively identified in the analysed samples.
Significance: The advantage of the proposed approach is the possibility of quantifying 65 classical drugs of abuse and NPS and, at the same time, detect and putatively identify 146 additional drugs in one single LC-MS/MS run. This is an innovative strategy for multi analyte detection and enables detection of low concentrations of drugs in complex biological matrices such as oral fluid. Considering the highly dynamic drug market, a strength of this strategy is that the analytical method can be kept up to date through the addition of new compounds based on the last drug monitoring bodies alerts without the need of authentic standards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.342529 | DOI Listing |
Dent Mater
December 2024
University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP 05508-000, Brazil. Electronic address:
Objectives: This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.
Methods: Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50).
J Food Sci
December 2024
Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.
Vitamin B, or riboflavin, is essential for maintaining healthy cellular metabolism and function. However, its light sensitivity, poor water solubility, and gastrointestinal barriers limit its storage, delivery, and absorption. Selecting suitable nanomaterials for encapsulating vitamin B is crucial to overcoming these challenges.
View Article and Find Full Text PDFOsteoarthritis Cartilage
December 2024
Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China. Electronic address:
Objective: Abnormal mechanical stress is intimately coupled with osteoarthritis (OA). Microtubules play a vital role in the regulation of mechanotransduction and intracellular transport. The purpose of the present study was to investigate the impact of stress-induced microtubule impairment on intracellular transport and lipid droplet (LD) accumulation in chondrocytes.
View Article and Find Full Text PDFJ Pharm Sci
December 2024
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark. Electronic address:
Physiological and artificial solubilizing agents usually enhance apparent solubility of poorly soluble drugs, and in many cases also oral drug exposure. However, exposure may decrease in cases where micellization reduces the molecularly dissolved drug fraction, overriding the solubility advantage. While this information is critical to accurately anticipate the effect of drug micellization on oral absorption, the experimental determination of molecularly dissolved drug concentrations is complex and time consuming.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece. Electronic address:
Introduction: Α customized organ-on-a-chip microfluidic device was developed for dynamic culture of oral mucosa equivalents (Oral_mucosa_chip-OMC).
Materials And Methods: Additive Manufacturing (AM) was performed via stereolithography (SLA) printing. The dimensional accuracy was evaluated via microfocus computed tomography (mCT), the surface characteristics via scanning electron microscopy (SEM), while the mechanical properties via nanoindentation and compression tests.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!