Acinetobacter baumannii (A. baumannii) is a pathogenic bacterium that causes severe infections and its rapid and reliable diagnosis is essential for effective control and treatment. In this study, we present an electrochemical aptasensor based on a signal amplification strategy for the detection of A. baumannii, the high specificity and affinity of the aptamer for the target make it favorable for signal amplification. This allows for a highly sensitive and selective detection of the target. The aptasensor is based on a carbon screen-printed electrode (CSPE) that has been modified with a nanocomposite consisting of multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), chitosan (CS), and a synthesized carbon quantum dot (CQD) from CS. Additionally, the self-assembled aptamers were immobilized on hemin-graphite oxide (H-GO) as a signal probe. The composition of the nanocomposite (rGO-MWCNT/CS/CQD) provides high conductivity and stability, facilitating the efficient capture of A. baumannii onto the surface of the aptasensor. Also, aptamer immobilized on Hemin-graphite oxide (H-GO/Aptamer) was utilized as an electrochemical signal reporter probe by H reduction. This approach improved the detection sensitivity and the aptamer surface density for detecting A. baumannii. Furthermore, under optimized experimental conditions, the aptasensor was demonstrated to be capable of detecting A. baumannii with a linear range of (10 - 1 × 10 Colony-forming unit (CFU)/mL) and a limit of detection (LOD) of 1 CFU/mL (σ = 3). One of the key features of this aptasensor is its ability to distinguish between live and dead bacteria cells, which is very important and critical for clinical applications. In addition, we have successfully detected A. baumannii bacteria in healthy human serum and skim milk powder samples provided using the prepared electrochemical aptasensor. The functional groups present in the synthetic CQD, rGO-MWCNT, and chitosan facilitate biomolecule immobilization and enhance stability and activity. The fast electron-transfer kinetics and high conductivity of these materials contribute to improved sensitivity and selectivity. Furthermore, The H-GO/Aptamer composite's large surface area increases the number of immobilized secondary aptamers and enables a more stable structure. This large surface area also facilitates more H loading, leading to signal amplification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342491DOI Listing

Publication Analysis

Top Keywords

electrochemical aptasensor
12
aptasensor based
12
hemin-graphite oxide
12
signal amplification
12
quantum dot
8
baumannii
8
acinetobacter baumannii
8
baumannii bacteria
8
immobilized hemin-graphite
8
high conductivity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!