The membrane raft accommodates the key enzymes synthesizing amyloid β (Aβ). One of the two characteristic components of the membrane raft, cholesterol, is well known to promote the key enzymes that produce amyloid-β (Aβ) and exacerbate Alzheimer's disease (AD) pathogenesis. Given that the raft is a physicochemical platform for the sound functioning of embedded bioactive proteins, the other major lipid component sphingomyelin may also be involved in AD. Here we knocked out the sphingomyelin synthase 2 gene (SMS2) in 3xTg AD model mice by hybridization, yielding SMS2KO mice (4S mice). The novel object recognition test in 9/10-month-old 4S mice showed that cognitive impairment in 3xTg mice was alleviated by SMS2KO, though performance in the Morris water maze (MWM) was not improved. The tail suspension test detected a depressive trait in 4S mice, which may have hindered the manifestation of performance in the wet, stressful environment of MWM. In the hippocampal CA1, hyperexcitability in 3xTg was also found alleviated by SMS2KO. In the hippocampal dentate gyrus of 4S mice, the number of neurons positive with intracellular Aβ or its precursor proteins, the hallmark of young 3xTg mice, is reduced to one-third, suggesting an SMS2KO-led suppression of syntheses of those peptides in the dentate gyrus. Although we previously reported that large-conductance calcium-activated potassium (BK) channels are suppressed in 3xTg mice and their recovery relates to cognitive amelioration, no changes occurred by hybridization. Sphingomyelin in the membrane raft may serve as a novel target for AD drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2024.148934DOI Listing

Publication Analysis

Top Keywords

membrane raft
12
3xtg mice
12
mice
9
sphingomyelin synthase
8
synthase gene
8
cognitive impairment
8
alzheimer's disease
8
key enzymes
8
alleviated sms2ko
8
dentate gyrus
8

Similar Publications

Plasma membrane (PM) simulations at longer length and time scales at nearly atomistic resolution can provide invaluable insights into cell signaling, apoptosis, lipid trafficking, and lipid raft formation. We propose a coarse-grained (CG) model of a mammalian PM considering major lipid head groups distributed asymmetrically across the membrane bilayer and validate the model against bilayer structural properties from atomistic simulation. Using the proposed CG model, we identify a recurring pattern in the passive collective cholesterol transbilayer motion and study the individual cholesterol flip-flop events and associated pathways along with lateral ordering in the bilayer during a flip-flop event.

View Article and Find Full Text PDF

Toxic Effects of Butanol in the Plane of the Cell Membrane.

Langmuir

January 2025

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45220, United States.

Solvent toxicity limits -butanol fermentation titer, increasing the cost and energy consumption for subsequent separation processes and making biobased production more expensive and energy-intensive than petrochemical approaches. Amphiphilic solvents such as -butanol partition into the cell membrane of fermenting microorganisms, thinning the transverse structure, and eventually causing a loss of membrane potential and cell death. In this work, we demonstrate the deleterious effects of -butanol partitioning upon the lateral dimension of the membrane structure, called membrane domains or lipid rafts.

View Article and Find Full Text PDF

Plasma membranes are known to segregate into liquid disordered and ordered nanoscale phases, the latter being called lipid rafts. The structure, lipid composition, and function of lipid rafts have been the subject of numerous studies using a variety of experimental and computational methods. Double electron-electron resonance (DEER, also known as PELDOR) is a member of the pulsed dipole EPR spectroscopy (PDS) family of techniques, allowing the study of nanoscale distances between spin-labeled molecules.

View Article and Find Full Text PDF

Most studies on the docking of ivermectin on the spike protein of SARS-CoV-2 concern the receptor binding domain (RBD) and, more precisely, the RBD interface recognized by the ACE2 receptor. The N-terminal domain (NTD), which controls the initial attachment of the virus to lipid raft gangliosides, has not received the attention it deserves. In this study, we combined molecular modeling and physicochemical approaches to analyze the mode of interaction of ivermectin with the interface of the NTD-facing lipid rafts of the host cell membrane.

View Article and Find Full Text PDF

Lipid rafts are subdomains of the cell membrane that are rich in cholesterol and glycolipids, and they are involved in various cellular processes and pathophysiological mechanisms. However, the specific role of lipid rafts in hepatocyte dysfunction during the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is not fully understood. In this study, we investigated the impact of lipid rafts on insulin sensitivity and hepatocyte injury induced by saturated free fatty acids (sFFAs) using primary-cultured mouse hepatocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!