Isolation and chemical characterization of lignocellulosic fiber from Pueraria montana using Box-Behnken design for weed management.

Int J Biol Macromol

Chemistry and Bioprospecting Division, Forest Research Institute, Dehradun, India; Institute of Green Economy, Gurugram 122002, India.

Published: May 2024

The huge demand for natural fibers necessitates the search for non-traditional bioresources including invasive species which are deteriorating the ecosystem and biodiversity. The study aims to utilize Pueraria montana weed for the extraction of lignocellulosic fiber using both traditional (water retting) and chemical extraction methods to determine the better extraction method. Chemically extracted fiber showed 17.09 g/tex bundle strength whereas water-extracted fiber showed 11.7 g/tex bundle strength. Therefore, chemical extraction method was chosen for fiber isolation by optimization of reaction conditions using Box Behnken Design. Based on the design, optimal conditions obtained were 1 % w/v NaOH, 0.75 % v/v HO, and 3 days retting time. Solid-state NMR illustrated the breakdown of hemicellulose linkages at 25.89 ppm. FTIR revealed the disappearance of C=O groups of hemicellulose at 1742 cm. TGA demonstrated thermal stability of chemically treated fiber up to 220 °C and activation energy of 60.122 KJ/mol. XRD evidenced that chemically extracted fiber has a crystallinity index of 71.1 % and a crystal size of 2 nm. Thus P. montana weed holds potential for the isolation of natural fiber as its chemical composition and properties are comparable to commercial lignocellulosic fibers. The study exemplifies the transformation of weed to a bioresource of natural fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.131479DOI Listing

Publication Analysis

Top Keywords

fiber
8
lignocellulosic fiber
8
pueraria montana
8
natural fibers
8
montana weed
8
chemical extraction
8
extraction method
8
chemically extracted
8
extracted fiber
8
bundle strength
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!