Molecular modification of low-dissolution soy protein isolates by anionic xanthan gum, neutral guar gum, or neutral konjac glucomannan to improve the protein dissolution and stabilize fish oil emulsion.

Int J Biol Macromol

Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China. Electronic address:

Published: May 2024

Herein, the effects of anionic xanthan gum (XG), neutral guar gum (GG), and neutral konjac glucomannan (KGM) on the dissolution, physicochemical properties, and emulsion stabilization ability of soy protein isolate (SPI)-polysaccharide conjugates were studied. The SPI-polysaccharide conjugates had better water dissolution than the insoluble SPI. Compared with SPI, SPI-polysaccharide conjugates had lower β-sheet (39.6 %-56.4 % vs. 47.3 %) and α-helix (13.0 %-13.2 % vs. 22.6 %) percentages, and higher β-turn (23.8 %-26.5 % vs. 11.0 %) percentages. The creaming stability of SPI-polysaccharide conjugate-stabilized fish oil-loaded emulsions mainly depended on polysaccharide type: SPI-XG (Creaming index: 0) > SPI-GG (Creaming index: 8.1 %-21.2 %) > SPI-KGM (18.1 %-40.4 %). In addition, it also depended on the SPI preparation concentrations, glycation times, and glycation pH. The modification by anionic XG induced no obvious emulsion creaming even after 14-day storage, which suggested that anionic polysaccharide might be the best polysaccharide to modify SPI for emulsion stabilization. This work provided useful information to modify insoluble proteins by polysaccharides for potential application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.131521DOI Listing

Publication Analysis

Top Keywords

gum neutral
16
spi-polysaccharide conjugates
12
soy protein
8
anionic xanthan
8
xanthan gum
8
neutral guar
8
guar gum
8
neutral konjac
8
konjac glucomannan
8
emulsion stabilization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!