The availability of suitable electron donors and acceptors limits micropollutant natural attenuation in oligotrophic groundwater. This study investigated how electron donors with different biodegradability (humics, dextran, acetate, and ammonium), and different oxygen concentrations affect the biodegradation of 15 micropollutants (initial concentration of each micropollutant = 50 μg/L) in simulated nitrate reducing aquifers. Tests mimicking nitrate reducing field conditions showed no micropollutant biodegradation, even with electron donor amendment. However, 2,4-dichlorophenoxyacetic acid and mecoprop were biodegraded under (micro)aerobic conditions with and without electron donor addition. The highest 2,4-dichlorophenoxyacetic acid and mecoprop biodegradation rates and removal efficiencies were obtained under fully aerobic conditions with amendment of an easily biodegradable electron donor. Under microaerobic conditions, however, amendment with easily biodegradable dissolved organic carbon (DOC) inhibited micropollutant biodegradation due to competition between micropollutants and DOC for the limited oxygen available. Microbial community composition was dictated by electron acceptor availability and electron donor amendment, not by micropollutant biodegradation. Low microbial community richness and diversity led to the absence of biodegradation of the other 13 micropollutants (such as bentazon, chloridazon, and carbamazepine). Finally, adaptation and potential growth of biofilms interactively determined the location of the micropollutant removal zone relative to the point of amendment. This study provides new insight on how to stimulate in situ micropollutant biodegradation to remediate oligotrophic groundwaters as well as possible limitations of this process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.172339 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Bio-Microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran.
Water pollution, driven by a variety of enduring contaminants, poses considerable threats to ecosystems, human health, and biodiversity, highlighting the urgent need for innovative and sustainable treatment approaches. Ozone-based advanced oxidation processes (AOPs) have demonstrated significant efficacy in breaking down stubborn pollutants, such as organic micropollutants and pathogens, that are not easily addressed by traditional treatment techniques. This review offers an in-depth analysis of ozonation mechanisms, covering both the direct oxidation by ozone and the indirect reactions facilitated by hydroxyl radicals, emphasizing their effectiveness and adaptability across various wastewater matrices.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
Riverbank filtration (RBF) has emerged as a crucial and functional water treatment method, particularly effective in improving surface water quality. This review is aimed at assessing the suitability of RBF in regions with limited access to clean water, such as Africa, where it has the potential to alleviate water scarcity and enhance water security. This review used various studies, highlighting the principles, applications, and advancements of RBF worldwide.
View Article and Find Full Text PDFChemosphere
February 2025
HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34090, Montpellier, France.
Water scarcity in the Mediterranean area has increased the number of intermittent rivers. Recently, hyporheic zones (HZ) of intermittent rivers have gained attention since a substantial part of the stream's natural purification capacity is located within these zones. Thus, understanding the flow dynamics in HZs is crucial for gaining insights into the degradation of organic micropollutants.
View Article and Find Full Text PDFWater Res
December 2024
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Biological activated carbon (BAC) filtration is vital for the abatement of micropollutants in drinking water. However, limited information is available on contaminant removal in BAC filters with aged media (e.g.
View Article and Find Full Text PDFToxicol Mech Methods
January 2025
Department of Life Sciences, of the University of Coimbra, Coimbra, Portugal.
Mitochondria are affected by chemical substances and play a critical role in drug-induced liver injury (DILI). Chemical substances can have a significant impact on various cellular processes, such as the disruption of oxidative phosphorylation, oxidative stress, and alteration of glucose metabolism. Given the consequences of these effects, it is crucial to understand the molecular pathways of chemical substances in the context of hepatotoxicity to prevent and treat DILI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!