Ion-adsorption rare earth element (REE) deposits distributed in the subtropics provide a rich global source of REEs, but in situ injection of REEs extractant into the mine can result in leachate being leaked into the surrounding groundwater systems. Due to the lack of understanding of REE speciation distribution, particularly colloidal characteristics in a mining area, the risks of REEs migration caused by in situ leaching of ion-adsorption REE deposits has not been concerned. Here, ultrafiltration and asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (AF4-ICP-MS) were integrated to characterize the size and composition of REEs in leachate and groundwater from mining catchments in South China. Results show that REEs were associated with four fractions: 1) the <1 kDa fraction including dissolved REEs; 2) the 1 - 100 kDa nano-colloidal fraction containing organic compounds; 3) the 100 kDa - 220 nm fine colloids including organic-mineral (Fe, Mn and Al (oxy)hydroxides and clay minerals); 4) the >220 nm coarse colloids and acid soluble particles (ASPs) comprising minerals. Influenced by the ion exchange effect of in situ leaching, REEs in leachate were mostly dissolved (79 %). The pH of the groundwater far from the mine site was increased (5.8 - 7.3), the fine organic-mineral colloids (46 % - 80 %) were the main vectors of transport for REEs. Further analysis by AF4 revealed that the fine colloids can be divided into mineral-rich (F1, 100 kDa - 120 nm) and organic matter-rich (F2, 120 - 220 nm) populations. The main colloids associated with REEs shifted from F1 (64 % ∼ 76 %) to F2 (50 % ∼ 52 %) away from the mining area. For F1 and F2, the metal/C molar ratio decreased away from the mining area and middle to heavy REE enrichment was presented. According to the REE fractionation, organic matter was the predominant component capable of binding REEs in fine colloids. Overall, our results indicate that REEs in the groundwater system shifted from the dissolved to the colloidal phase in a catchment affected by in situ leaching, and organic-mineral colloids play an important role in facilitating the migration of REEs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121582 | DOI Listing |
Water Res
June 2024
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, PR China. Electronic address:
Ion-adsorption rare earth element (REE) deposits distributed in the subtropics provide a rich global source of REEs, but in situ injection of REEs extractant into the mine can result in leachate being leaked into the surrounding groundwater systems. Due to the lack of understanding of REE speciation distribution, particularly colloidal characteristics in a mining area, the risks of REEs migration caused by in situ leaching of ion-adsorption REE deposits has not been concerned. Here, ultrafiltration and asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (AF4-ICP-MS) were integrated to characterize the size and composition of REEs in leachate and groundwater from mining catchments in South China.
View Article and Find Full Text PDFInt J Biol Macromol
April 2023
Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran. Electronic address:
This study aimed to prepare a novel organic-mineral nanofiber/hydrogel of chitosan-polyethylene oxide (CS-PEO)/nanoclay-alginate (NC-ALG). The effects of NC particles on the mineralization and biocompatibility of the scaffold were investigated. A layer-by-layer scaffold composed of CS-PEO and NC-ALG was prepared.
View Article and Find Full Text PDFChemosphere
September 2022
Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, V. De Sanctis, I-86100, Campobasso (CB), Italy.
Goethite, hematite, ferrihydrite, and other iron oxides bind through various sorption reactions with humic substances (HS) in soils creating nano-, micro-, and macro-aggregates with a specific nature and stability. Long residence times of soil organic matter (SOM) have been attributed to iron-humic substance (Fe-HS) complexes due to physical protection and chemical stabilization at the organic-mineral interface. Humic acids (HA) and fulvic acids (FA) contain many acidic functional groups that interact with Fe oxides through different mechanisms.
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2021
Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 rue Humann, 67085 Strasbourg Cedex, France. Electronic address:
Hypothesis: The setting time and mechanical properties of cements are a major technical concern for a long time in civil engineering. More recently those practical problems became a major concern for biomedical applications -in bone surgery and in dentistry- in particular concerning the setting time which should be minimized. The possibility to add organic additives to interact with the different constituting ions in cements constitutes a way to modify the setting kinetics.
View Article and Find Full Text PDFSci Total Environ
February 2020
Department of Plant and Soil Sciences, University of Delaware, Newark DE-19716, USA. Electronic address:
Organo-mineral association is one of the most important stabilization mechanisms of soil organic matter. However, few studies have been conducted to assess the retention, transformation, and transportation of colloids (1-1000 nm) and associated organic carbon (OC) in soil. Given the particularly significant role that wetland soils play in carbon storage and cycling, we quantified the dynamics of organo-mineral association within colloidal size range by conducting three consecutive 35-day redox (reduction-oxidation) oscillation experiments using a wetland soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!