Pectolinarigenin ameliorates osteoporosis via enhancing Wnt signaling cascade in PPARβ-dependent manner.

Phytomedicine

Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Implantology, Stomatological Hospital and Dental School, Tongji University, Shanghai, China. Electronic address:

Published: July 2024

Background: Osteoporosis is a prevalent metabolic bone disease in older adults. Peroxisome proliferator-activated receptor β (PPARβ), the most abundant PPAR isotype expressed in bone tissues, plays a critical role in regulating the energy metabolism of osteoblasts. However, the botanical compounds targeting PPARβ for the treatment of osteoporosis remain largely unexplored.

Purpose: To discover a potent PPARβ agonist from botanical compounds, as well as to investigate the anti-osteoporosis effects and to elucidate the underlying mechanisms of the newly identified PPARβ agonist.

Methods: The PPARβ agonist effects of botanical compounds were screened by an in vitro luciferase reporter gene assay. The PPARβ agonist effects of pectolinarigenin (PEC) in bone marrow mesenchymal stromal cells (BMSCs) were validated by Western blotting. RNA-seq transcriptome analyses were conducted to reveal the underlying osteoporosis mechanisms of PEC in BMSCs. The PPARβ antagonist (GSK0660) and Wnt signaling inhibitor (XAV969) were used to explore the role of the PPARβ and Wnt signaling cascade in the anti-osteoporosis effects of PEC. PEC or the PEG-PLGA nanoparticles of PEC (PEC-NP) were intraperitoneally administrated in both wild-type mice and ovariectomy-induced osteoporosis mice to examine its anti-osteoporotic effects in vivo.

Results: PEC, a newly identified naturally occurring PPARβ agonist, significantly promotes osteogenic differentiation and up-regulates the osteogenic differentiation-related genes (Runx2, Osterix, and Bmp2) in BMSCs. RNA sequencing and functional gene enrichment analysis suggested that PEC could activate osteogenic-related signaling pathways, including Wnt and PPAR signaling pathways. Further investigations suggested that PEC could enhance Wnt/β-catenin signaling in a PPARβ-dependent manner in BMSCs. Animal tests showed that PEC-NP promoted bone mass and density, increased the bone cell matrix protein, and accelerated bone formation in wild-type mice, while PEC-NP also played a preventive role in ovariectomy-induced osteoporosis mice via maintaining the expression level of bone cell matrix protein, balancing the rate of bone formation, and slowing down bone loss. Additionally, PEC-NP did not cause any organ injury and body weight loss after long-term use (11 weeks).

Conclusion: PEC significantly promotes bone formation and reduces bone loss in both BMSCs and ovariectomy-induced osteoporosis mice via enhancing the Wnt signaling cascade in a PPARβ-dependent manner, providing a new alternative therapy for preventing estrogen deficiency-induced osteoporotic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2024.155587DOI Listing

Publication Analysis

Top Keywords

wnt signaling
16
pparβ agonist
16
signaling cascade
12
pparβ-dependent manner
12
botanical compounds
12
ovariectomy-induced osteoporosis
12
osteoporosis mice
12
bone formation
12
bone
11
pparβ
9

Similar Publications

The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates.

View Article and Find Full Text PDF

The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.

View Article and Find Full Text PDF

Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.

View Article and Find Full Text PDF

Moracin M promotes hair regeneration through activation of the WNT/β-catenin pathway and angiogenesis.

Arch Dermatol Res

January 2025

Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea.

Hair follicle growth depends on the intricate interaction of cells within the follicle and its vascular supply. Current FDA-approved treatments like minoxidil have limitations, including side effects and the need for continuous use. Moracin M, a compound from Moraceae family, was investigated for its effects on hair growth and vascular regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!