A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial intelligence for detection of effusion and lipo-hemarthrosis in X-rays and CT of the knee. | LitMetric

Artificial intelligence for detection of effusion and lipo-hemarthrosis in X-rays and CT of the knee.

Eur J Radiol

Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Published: June 2024

Background: Traumatic knee injuries are challenging to diagnose accurately through radiography and to a lesser extent, through CT, with fractures sometimes overlooked. Ancillary signs like joint effusion or lipo-hemarthrosis are indicative of fractures, suggesting the need for further imaging. Artificial Intelligence (AI) can automate image analysis, improving diagnostic accuracy and help prioritizing clinically important X-ray or CT studies.

Objective: To develop and evaluate an AI algorithm for detecting effusion of any kind in knee X-rays and selected CT images and distinguishing between simple effusion and lipo-hemarthrosis indicative of intra-articular fractures.

Methods: This retrospective study analyzed post traumatic knee imaging from January 2016 to February 2023, categorizing images into lipo-hemarthrosis, simple effusion, or normal. It utilized the FishNet-150 algorithm for image classification, with class activation maps highlighting decision-influential regions. The AI's diagnostic accuracy was validated against a gold standard, based on the evaluations made by a radiologist with at least four years of experience.

Results: Analysis included CT images from 515 patients and X-rays from 637 post traumatic patients, identifying lipo-hemarthrosis, simple effusion, and normal findings. The AI showed an AUC of 0.81 for detecting any effusion, 0.78 for simple effusion, and 0.83 for lipo-hemarthrosis in X-rays; and 0.89, 0.89, and 0.91, respectively, in CTs.

Conclusion: The AI algorithm effectively detects knee effusion and differentiates between simple effusion and lipo-hemarthrosis in post-traumatic patients for both X-rays and selected CT images further studies are needed to validate these results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2024.111460DOI Listing

Publication Analysis

Top Keywords

simple effusion
20
effusion lipo-hemarthrosis
16
effusion
10
artificial intelligence
8
lipo-hemarthrosis x-rays
8
traumatic knee
8
lipo-hemarthrosis indicative
8
diagnostic accuracy
8
detecting effusion
8
x-rays selected
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!