Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Traumatic knee injuries are challenging to diagnose accurately through radiography and to a lesser extent, through CT, with fractures sometimes overlooked. Ancillary signs like joint effusion or lipo-hemarthrosis are indicative of fractures, suggesting the need for further imaging. Artificial Intelligence (AI) can automate image analysis, improving diagnostic accuracy and help prioritizing clinically important X-ray or CT studies.
Objective: To develop and evaluate an AI algorithm for detecting effusion of any kind in knee X-rays and selected CT images and distinguishing between simple effusion and lipo-hemarthrosis indicative of intra-articular fractures.
Methods: This retrospective study analyzed post traumatic knee imaging from January 2016 to February 2023, categorizing images into lipo-hemarthrosis, simple effusion, or normal. It utilized the FishNet-150 algorithm for image classification, with class activation maps highlighting decision-influential regions. The AI's diagnostic accuracy was validated against a gold standard, based on the evaluations made by a radiologist with at least four years of experience.
Results: Analysis included CT images from 515 patients and X-rays from 637 post traumatic patients, identifying lipo-hemarthrosis, simple effusion, and normal findings. The AI showed an AUC of 0.81 for detecting any effusion, 0.78 for simple effusion, and 0.83 for lipo-hemarthrosis in X-rays; and 0.89, 0.89, and 0.91, respectively, in CTs.
Conclusion: The AI algorithm effectively detects knee effusion and differentiates between simple effusion and lipo-hemarthrosis in post-traumatic patients for both X-rays and selected CT images further studies are needed to validate these results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2024.111460 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!