Preparation of antibacterial hydrogel from poly(aspartic hydrazide) and quaternized N-[3-(dimethylamino) propyl] methylacrylamide copolymer with antioxidant and hemostatic effects for wound repairing.

Colloids Surf B Biointerfaces

College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China. Electronic address:

Published: June 2024

AI Article Synopsis

  • Hydrogels are becoming popular as wound dressings because they create a wet environment that helps wounds heal.
  • This research developed a multifunctional hydrogel that is antibacterial and antioxidant, made from specific compounds which enhance its healing properties and support blood clotting.
  • The hydrogel not only shows effective antimicrobial activity against bacteria like E. coli and S. aureus but also demonstrates good biocompatibility and accelerates wound healing in live tests.

Article Abstract

Hydrogels as wound dressing have attracted extensive attention in past decade because they can provide moist microenvironment to promote wound healing. Herein, this research designed a multifunctional hydrogel with antibacterial property and antioxidant activity fabricated from quaternary ammonium bearing light emitting quaternized TPE-P(DAA-co-DMAPMA) (QTPDD) and poly(aspartic hydrazide) (PAH). The protocatechuic aldehyde (PCA) grafted to the hydrogel through dynamic bond endowed the hydrogel with antioxidant activity and the tranexamic acid (TXA) was loaded to enhance the hemostatic performance. The hydrogel possesses preferable gelation time for injectable application, good antioxidant property and tissue adhesion, improved hemostatic performance fit for wound repairing. Furthermore, the hydrogel has excellent antimicrobial property to both E. coli and S. aureus based on quaternary ammonium structure. The hydrogel also showed good biocompatibility and the in vivo experiments proved this hydrogel can promote the wound repairing rate. This study suggests that TXA/hydrogel with quaternary ammonium structure and dynamic grafted PCA have great potential in wound healing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2024.113881DOI Listing

Publication Analysis

Top Keywords

wound repairing
12
quaternary ammonium
12
hydrogel
8
polyaspartic hydrazide
8
promote wound
8
wound healing
8
antioxidant activity
8
hemostatic performance
8
ammonium structure
8
wound
6

Similar Publications

Purpose: This study aimed to investigate whether combining the analysis of different magnetic resonance imaging (MRI) signs enhances the diagnostic accuracy of lateral meniscus posterior root tears (LMPRTs) in patients with anterior cruciate ligament (ACL) injuries. We hypothesised that analysing the cleft, ghost and truncated triangle signs and lateral meniscus extrusion (LME) measurement together would improve the preoperative MRI-based diagnosis of LMPRTs.

Methods: This retrospective study used prospectively collected registry data from two academic centres, including patients undergoing primary or revision ACL reconstruction (ACLR) and LMPRT repair.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

Lifesaving surgical approaches for severe penetrating knife injury to the neck.

J Cardiothorac Surg

January 2025

Institute of Cardiovascular and Thoracic Surgery, Madras Medical College, Chennai, India.

Background: Penetrating neck injuries are rare and require urgent surgical intervention to prevent life-threatening complications. This report highlights a unique case involving complex surgical repair of tracheal, esophageal, and vascular injuries following a homicidal assault, emphasizing the challenges and techniques used in managing such severe trauma.

Case Presentation: A 45-year-old female presented with a severe penetrating neck injury after an alleged homicidal assault with a knife.

View Article and Find Full Text PDF

Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.

View Article and Find Full Text PDF

NIR photo-responsive injectable chitosan/hyaluronic acid hydrogels with controlled NO release for the treatment of MRSA infections.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530000, China. Electronic address:

Due to resistance to common antibiotics, methicillin-resistant Staphylococcus aureus (MRSA) infections pose a significant threat to human health. In this study, we developed an injectable, adhesive, and biocompatible hydrogel with multiple functions. Specifically, carboxymethyl chitosan (CMCS) crosslinked with hyaluronic acid (HA) forms the primary framework of the hydrogel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!