Background: Respiratory syncytial virus (RSV) affects children, causing serious infections, particularly in high-risk groups. Given the seasonality of RSV and the importance of rapid isolation of infected individuals, there is an urgent need for more efficient diagnostic methods to expedite this process.

Objective: This study aimed to investigate the performance of a machine learning model that leverages the temporal diversity of symptom onset for detecting RSV infections and elucidate its discriminatory ability.

Methods: The study was conducted in pediatric and emergency outpatient settings in Japan. We developed a detection model that remotely confirms RSV infection based on patient-reported symptom information obtained using a structured electronic template incorporating the differential points of skilled pediatricians. An extreme gradient boosting-based machine learning model was developed using the data of 4174 patients aged ≤24 months who underwent RSV rapid antigen testing. These patients visited either the pediatric or emergency department of Yokohama City Municipal Hospital between January 1, 2009, and December 31, 2015. The primary outcome was the diagnostic accuracy of the machine learning model for RSV infection, as determined by rapid antigen testing, measured using the area under the receiver operating characteristic curve. The clinical efficacy was evaluated by calculating the discriminative performance based on the number of days elapsed since the onset of the first symptom and exclusion rates based on thresholds of reasonable sensitivity and specificity.

Results: Our model demonstrated an area under the receiver operating characteristic curve of 0.811 (95% CI 0.784-0.833) with good calibration and 0.746 (95% CI 0.694-0.794) for patients within 3 days of onset. It accurately captured the temporal evolution of symptoms; based on adjusted thresholds equivalent to those of a rapid antigen test, our model predicted that 6.9% (95% CI 5.4%-8.5%) of patients in the entire cohort would be positive and 68.7% (95% CI 65.4%-71.9%) would be negative. Our model could eliminate the need for additional testing in approximately three-quarters of all patients.

Conclusions: Our model may facilitate the immediate detection of RSV infection in outpatient settings and, potentially, in home environments. This approach could streamline the diagnostic process, reduce discomfort caused by invasive tests in children, and allow rapid implementation of appropriate treatments and isolation at home. The findings underscore the potential of machine learning in augmenting clinical decision-making in the early detection of RSV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11053391PMC
http://dx.doi.org/10.2196/52412DOI Listing

Publication Analysis

Top Keywords

machine learning
20
rsv infection
16
learning model
12
rapid antigen
12
model
9
respiratory syncytial
8
syncytial virus
8
based patient-reported
8
rsv
8
rsv rapid
8

Similar Publications

In the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance.

View Article and Find Full Text PDF

Human vs Machine: The Future of Decision-making in Plastic and Reconstructive Surgery.

Aesthet Surg J

January 2025

Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Altınbas University, Istanbul, Turkey.

Background: Artificial intelligence (AI)-driven technologies offer transformative potential in plastic surgery, spanning pre-operative planning, surgical procedures, and post-operative care, with the promise of improved patient outcomes.

Objectives: To compare the web-based ChatGPT-4o (omni; OpenAI, San Francisco, CA) and Gemini Advanced (Alphabet Inc., Mountain View, CA), focusing on their data upload feature and examining outcomes before and after exposure to CME articles, particularly regarding their efficacy relative to human participants.

View Article and Find Full Text PDF

How Outcome Prediction Could Aid Clinical Practice.

Br J Hosp Med (Lond)

January 2025

Department of Surgery & Cancer, Imperial College London, London, UK.

Predictive algorithms have myriad potential clinical decision-making implications from prognostic counselling to improving clinical trial efficiency. Large observational (or "real world") cohorts are a common data source for the development and evaluation of such tools. There is significant optimism regarding the benefits and use cases for risk-based care, but there is a notable disparity between the volume of clinical prediction models published and implementation into healthcare systems that drive and realise patient benefit.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

Radio frequency identification (RFID) technology and marker recognition algorithms can offer an efficient and non-intrusive means of tracking animal positions. As such, they have become important tools for invertebrate behavioral research. Both approaches require fixing a tag or marker to the study organism, and so it is useful to quantify the effects such procedures have on behavior before proceeding with further research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!