Mid-infrared Imaging Using Strain-Relaxed GeSn Alloys Grown on 20 nm Ge Nanowires.

Nano Lett

Department of Engineering Physics, École Polytechnique de Montréal, Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec H3C 3A7, Canada.

Published: April 2024

Germanium-tin (GeSn) semiconductors are a front-runner platform for compact mid-infrared devices due to their tunable narrow bandgap and compatibility with silicon processing. However, their large lattice parameter has been a major hurdle, limiting the quality of epitaxial layers grown on silicon or germanium substrates. Herein, we demonstrate that 20 nm Ge nanowires (NWs) act as effective compliant substrates to grow extended defect-free GeSn alloys with a composition uniformity over several micrometers along the NW growth axis without significant buildup of the compressive strain. Ge/GeSn core/shell NWs with Sn content spanning the 6-18 at. % range are achieved and processed into photoconductors exhibiting a high signal-to-noise ratio at room temperature with a cutoff wavelength in the 2.0-3.9 μm range. The processed NW devices are integrated in an uncooled imaging setup enabling the acquisition of high-quality images under both broadband and laser illuminations at 1550 and 2330 nm without the lock-in amplifier technique.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c00759DOI Listing

Publication Analysis

Top Keywords

gesn alloys
8
mid-infrared imaging
4
imaging strain-relaxed
4
strain-relaxed gesn
4
alloys grown
4
grown nanowires
4
nanowires germanium-tin
4
germanium-tin gesn
4
gesn semiconductors
4
semiconductors front-runner
4

Similar Publications

GeSn alloy has emerged as an attractive active material for Si-based mid-infrared (MIR) lasers due to its direct bandgap nature at higher Sn concentrations. Here, we report on an optically-pumped GeSn MIR lasers based on planar slab waveguide with a top Si ridge structure. The inclusion of 10% Sn transforms the GeSn active layer into a direct bandgap material.

View Article and Find Full Text PDF

CMOS-compatible materials for efficient energy harvesters at temperatures characteristic for on-chip operation and body temperature are the key ingredients for sustainable green computing and ultralow power Internet of Things applications. In this context, the lattice thermal conductivity (κ) of new group IV semiconductors, namely GeSn alloys, are investigated. Layers featuring Sn contents up to 14 at.

View Article and Find Full Text PDF

Research progress of out-of-plane GeSn nanowires.

Nanotechnology

March 2024

Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China.

With the increasing integration density of silicon-based circuits, traditional electrical interconnections have shown their technological limitations. In recent years, GeSn materials have attracted great interest due to their potential direct bandgap transition and compatibility with silicon-based technologies. GeSn materials, including GeSn films, GeSn alloys, and GeSn nanowires, are adjustable, scalable, and compatible with silicon.

View Article and Find Full Text PDF

Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications.

Sensors (Basel)

February 2024

Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 621301, Taiwan.

GeSn alloys have recently emerged as complementary metal-oxide-semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great promise for optoelectronic applications. This study theoretically analyses Ge-capped GeSn pyramid quantum dots (QDs) on Ge substrates to explore their potential for such applications.

View Article and Find Full Text PDF

SiGeSn nanocrystals (NCs) in oxides are of considerable interest for photo-effect applications due to the fine-tuning of the optical bandgap by quantum confinement in NCs. We present a detailed study regarding the silicon germanium tin (SiGeSn) NCs embedded in a nanocrystalline hafnium oxide (HfO) matrix fabricated by using magnetron co-sputtering deposition at room temperature and rapid thermal annealing (RTA). The NCs were formed at temperatures in the range of 500-800 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!