A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photonic Pigments of Polystyrene--Polyvinylpyrrolidone Bottlebrush Block Copolymers via Sustainable Organized Spontaneous Emulsification. | LitMetric

Photonic Pigments of Polystyrene--Polyvinylpyrrolidone Bottlebrush Block Copolymers via Sustainable Organized Spontaneous Emulsification.

ACS Macro Lett

Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China.

Published: May 2024

Prior studies on photonic pigments of amphiphilic bottlebrush block copolymers (BBCPs) through an organized spontaneous emulsification (OSE) mechanism have been limited to using polyethylene glycol (PEG) as the hydrophilic side chains and toluene as the organic phase. Herein, a family of polystyrene--polyvinylpyrrolidone (PS--PVP) BBCPs are synthesized with PVP as the hydrophilic block. Biocompatible and sustainable anisole is employed for dissolving the obtained BBCPs followed by emulsification of the solutions in water. Subsequent evaporation of oil-in-water emulsion droplets triggers the OSE mechanism, producing thermodynamically stable water-in-oil-in-water (w/o/w) multiple emulsions with uniform and closely packed internal droplet arrays through the assembly of the BBCPs at the w/o interface. Upon solidification, the homogeneous porous structures are formed within the photonic microparticles that exhibit visible structural colors. The pore diameter is widely tunable (150∼314 nm) by changing the degree of polymerization of BBCP (69∼110), resulting in tunable colors across the whole visible spectrum. This work demonstrates useful knowledge that OSE can be generally used in the fabrication of ordered porous materials with tunable internal functional groups, not only for photonic applications, but also offers a potential platform for catalysis, sensing, separation, encapsulation, etc.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.4c00070DOI Listing

Publication Analysis

Top Keywords

photonic pigments
8
bottlebrush block
8
block copolymers
8
organized spontaneous
8
spontaneous emulsification
8
ose mechanism
8
photonic
4
pigments polystyrene--polyvinylpyrrolidone
4
polystyrene--polyvinylpyrrolidone bottlebrush
4
copolymers sustainable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!