Gene therapy has the potential to facilitate targeted expression of therapeutic proteins to promote cartilage regeneration in osteoarthritis (OA). The dense, avascular, aggrecan-glycosaminoglycan (GAG) rich negatively charged cartilage, however, hinders their transport to reach chondrocytes in effective doses. While viral vector mediated gene delivery has shown promise, concerns over immunogenicity and tumorigenic side-effects persist. To address these issues, this study develops surface-modified cartilage-targeting exosomes as non-viral carriers for gene therapy. Charge-reversed cationic exosomes are engineered for mRNA delivery by anchoring cartilage targeting optimally charged arginine-rich cationic motifs into the anionic exosome bilayer by using buffer pH as a charge-reversal switch. Cationic exosomes penetrated through the full-thickness of early-stage arthritic human cartilage owing to weak-reversible ionic binding with GAGs and efficiently delivered the encapsulated eGFP mRNA to chondrocytes residing in tissue deep layers, while unmodified anionic exosomes do not. When intra-articularly injected into destabilized medial meniscus mice knees with early-stage OA, mRNA loaded charge-reversed exosomes overcame joint clearance and rapidly penetrated into cartilage, creating an intra-tissue depot and efficiently expressing eGFP; native exosomes remained unsuccessful. Cationic exosomes thus hold strong translational potential as a platform technology for cartilage-targeted non-viral delivery of any relevant mRNA targets for OA treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470115PMC
http://dx.doi.org/10.1002/smtd.202301443DOI Listing

Publication Analysis

Top Keywords

cationic exosomes
12
charge-reversed exosomes
8
gene delivery
8
gene therapy
8
exosomes
7
cartilage
6
exosomes targeted
4
gene
4
targeted gene
4
delivery
4

Similar Publications

Visual and fluorescence dual mode platform for sensitive and accurate screening of breast carcinoma.

Biosens Bioelectron

March 2025

TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China. Electronic address:

Compared to single-mode detection, dual-mode sensing strategies have garnered increasing attention from researchers due to their superior detection accuracy and reliability. Exosomes, as non-invasive biomarkers, hold significant potential for disease diagnosis. However, sensitive and precise detection of exosomes still presents considerable technical challenges.

View Article and Find Full Text PDF

Prolonged Immunomodulator Delivery Boosts Monocyte Exosome Secretion and Elevates Cathelicidin/LL-37 Content.

ACS Appl Mater Interfaces

January 2025

Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.

Human cathelicidin LL-37 offers significant benefits to the immune system and in treating various diseases, but its therapeutic potential is hindered by low activity and instability in physiological environments. Here, we introduce a strategy to boost LL-37 levels in exosomes derived from THP-1 monocytes by incubating cells with electrospun nanofibers containing immunomodulators (e.g.

View Article and Find Full Text PDF

Photothermal therapeutic effect by gold nanostars/extracellular vesicles nanocomplex on melanoma cells.

J Pharm Sci

December 2024

Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan. Electronic address:

Photothermal therapy (PTT) is a method for treating cancer using the heat generated by light irradiation, often in combination with light-absorbing materials. Efficient PTT requires a drug delivery system to deliver light-absorbing materials to cancerous tissues. Gold nanostars (GNSs) enable efficient PTT through absorbing long-wavelength light.

View Article and Find Full Text PDF

Golgi-derived extracellular vesicle production induced by SARS-CoV-2 envelope protein.

Apoptosis

November 2024

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.

Extracellular vesicles facilitate cell-to-cell communication, and some enveloped viruses utilize these vesicles as carriers to mediate viral transmission. SARS-CoV-2 envelope protein (2-E) forms a cation channel and overexpression of 2-E led to the generation of a distinct type of large extracellular vesicles (2-E-EVs). Although 2-E-EVs have been demonstrated to facilitate viral transmission in a receptor-independent way, the characteristics and biogenesis mechanism remain enigmatic.

View Article and Find Full Text PDF

Transport of miR-766-3p to A549 cells by plasma-derived exosomes and its effect on intracellular survival of Mycobacterium tuberculosis by regulating NRAMP1 expression in A549 cells.

Microbiol Res

January 2025

Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China. Electronic address:

Exosomal microRNAs (miRNAs) in circulation were recognized as potential biomarkers for the diagnosis of multiple diseases. However, its potential as a diagnostic hallmark for tuberculosis (TB) has yet to be explored. Here, we comprehensively analyze miRNA profiles in exosomes derived from the plasma of active TB patients and healthy persons to evaluate its efficacy in TB diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!