Transmembrane transporter proteins are essential for maintaining cellular homeostasis and, as such, are key drug targets. Many transmembrane transporter proteins are known to undergo large structural rearrangements during their functional cycles. Despite the wealth of detailed structural and functional data available for these systems, our understanding of their dynamics and, consequently, how they function is generally limited. We introduce an innovative approach that enables us to directly measure the dynamics and stability of interdomain interactions of transmembrane proteins using optical tweezers. Focusing on the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis, we examine the mechanical properties and potential interactions of its substrate-binding domains. Our measurements are performed in lipid nanodiscs, providing a native-mimicking environment for the transmembrane protein. The technique provides high spatial and temporal resolution and allows us to study the functionally relevant motions and interdomain interactions of individual transmembrane transporter proteins in real time in a lipid bilayer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2024.114110 | DOI Listing |
Biosci Trends
January 2025
Department of Rehabilitation, Beijing Rehabilitation Hospital Capital Medical University, Beijing, China.
In human-computer interaction, gesture recognition based on physiological signals offers advantages such as a more natural and fast interaction mode and less constrained by the environment than visual-based. Surface electromyography-based gesture recognition has significantly progressed. However, since individuals have physical differences, researchers must collect data multiple times from each user to train the deep learning model.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Energy and Environment, Inner Mongolia University of Science and Technology,Baotou, 014010, PR China; Collaborative Innovation Center of Autonomous Region for Ecological Protection and Comprehensive Utilization in the Inner Mongolia Section of the Yellow River Basin, Baotou, 014010, PR China. Electronic address:
The coexistence of different microbial communities is fundamental to the sustainability of many ecosystems, yet our understanding of the relationships among microbial communities in plateau cold-region lakes affected by seasonal ice cover remains limited. This research involved investigating three lakes in the Inner Mongolia segment of the Yellow River basin during frozen and unfrozen periods in two habitats: water bodies and sediments. The research examined the composition and function of bacteria, archaea, and fungi across different times and habitats within the basin, their response to environmental variables in water and sediment, and inter-domain interactions between bacteria-archaea and bacteria-fungi were compared using interdomain ecological network (IDEN).
View Article and Find Full Text PDFJ Struct Biol
January 2025
Department of Biochemical Engineering, University College London, London, United Kingdom. Electronic address:
Despite sharing ∼ 43 % sequence identity and structurally similar individual domains, botulinum neurotoxin (BoNT) serotypes A and E have differences in their properties and domain positioning. BoNT/E has a faster onset of action than BoNT/A. This difference is proposed to be due to conformational differences between BoNT/E and the other BoNT serotypes.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Key Laboratory of RNA Innovation, Science, and Engineering; Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
Lysosomal membrane protein LYCHOS (lysosomal cholesterol signaling) translates cholesterol abundance to mammalian target of rapamycin activation. Here we report the 2.11-Å structure of human LYCHOS, revealing a unique fusion architecture comprising a G-protein-coupled receptor (GPCR)-like domain and a transporter domain that mediates homodimer assembly.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
The protein therapeutics market, including antibody and fusion proteins, has experienced steady growth over the past decade, underscoring the importance of optimizing amino acid sequences. In our previous study, we developed a fusion protein, R31, which combines retinol-binding protein (RBP) with albumin domains IIIA and IB, linked by a sequence (AAAA), and includes an additional disulfide bond (N227C-V254C) in IIIA. This fusion protein effectively inhibited hepatic stellate cell activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!